Feeding the Central Molecular Zone

ANDY NILIPOUR,^{1,2} JUERGEN OTT,² DAVID MEIER,^{3,2} AND BRIAN SVOBODA² 1 ¹Department of Astronomy, Yale University, Steinbach Hall, 52 Hillhouse Ave, New Haven, CT 06511 2 ²National Radio Astronomy Observatory, PO Box O, 1003 Lopezville Road, Socorro, NM 87801 3 ³New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 ABSTRACT The Central Molecular Zone (CMZ) of the Milky Way is fed by gas inflows from the Galactic disk, 6 but despite being fundamental to all processes in the inner Milky Way, these inflows are much less well-understood than the CMZ itself. We observed 25 clouds in the Galactic disk with $|\ell| < 10^{\circ}$ which are candidates for gas accreting onto the CMZ due to their warm temperatures and broad lines. We 9 present observations of the SiO $J = 5 \rightarrow 4$, H₂CO $J = 3_{21} \rightarrow 2_{20}$, H₂CO $J = 3_{03} \rightarrow 2_{02}$, HC₃N 10 $J = 24 \rightarrow 23$, CH₃OH $J = 4_{22} \rightarrow 3_{12}$, C¹⁸O $J = 2 \rightarrow 1$, ¹³CO $J = 2 \rightarrow 1$, ¹²CO $J = 2 \rightarrow 1$, and H30 α 11 spectral lines with the Atacama Large Millimeter/submillimeter Array (ALMA) Atacama Compact 12 Array (ACA). We measure temperatures, shocks, star formation rates, and turbulent Mach numbers 13 for all of these clouds, providing a grid of cloud properties within the inner Galaxy. We find that 14 although the clouds likely do not lie along the CMZ inflows, there are several clouds associated with 15 regions that may be undergoing high velocity collisions. We also look into the differences in properties 16

and kinematics probed by the ammonia and formaldehyde thermometers.

1. INTRODUCTION

17

18

The Central Molecular Zone (CMZ) is a region of 19 ²⁰ molecular gas at high density and pressure within the inner ~ 250 pc of the Milky Way. The CMZ is con-21 22 tained within the Galactic bar, which has a radius of ²³ about 5 kpc (Bland-Hawthorn & Gerhard 2016). A non-²⁴ axisymmetric bar potential allows for two primary closed $_{25}$ orbits, the x_1 and x_2 orbits (Contopoulos & Grosbøl $_{26}$ 1989). x_1 orbits are elongated parallel to the major axis ²⁷ of the bar and can form cusps and self-intersecting loops, $_{28}$ whereas x_2 are closer to the Galactic center and are elon-²⁹ gated parallel to the minor axis of the bar. Shocks that $_{30}$ are formed at the self-intersections of material on x_1 $_{31}$ orbits drive gas to x_2 orbits (Binney et al. 1991). This $_{32}$ material on x_2 orbits comprises the CMZ (Sormani et al. $_{33}$ 2015), and the gas transitioning from x_1 to x_2 orbits are ³⁴ believed to form bar lanes that feed the CMZ.

³⁵ While the CMZ has been extensively studied at many ³⁶ wavelengths (eg. Kruijssen et al. 2014; Jones et al. 2012; ³⁷ Ginsburg et al. 2016; Oka et al. 2005), the bar lanes ³⁸ and inflows have been relatively neglected. Sormani ³⁹ & Barnes (2019) calculated the gas inflow rate to be ⁴⁰ $2.7^{+1.5}_{-1.7}$ M_{\odot} yr⁻¹ using previous observations of ¹²CO ⁴¹ and a simple geometrical model of the inner Galaxy, ⁴² but simulations show more complex dynamics, such as ⁴³ inflowing gas overshooting the CMZ and subsequently ⁴⁴ colliding with the bar lane on the opposite side (Sor⁴⁵ mani et al. 2019), which reduces the CMZ gas accretion ⁴⁶ rate to $0.8 \pm 0.6 \,\mathrm{M_{\odot} yr^{-1}}$ (Hatchfield et al. 2021). It has ⁴⁷ been suggested that clouds such as Bania 2 (B2; Stark ⁴⁸ & Bania 1986) and G5, which have broad lines, warm ⁴⁹ temperatures, and shocked gas, are sites of cloud-cloud ⁵⁰ collisions along the bar lanes (Sormani & Barnes 2019, ⁵¹ Gramze et al *in press*).

As gas flows along the bar lanes toward the CMZ, it 52 ⁵³ is believed to undergo many processes that inhibit star ⁵⁴ formation (Krumholz et al. 2017), but observations of ⁵⁵ such processes have been limited. However, studying ⁵⁶ the properties and dynamics of these gas flows is essen-⁵⁷ tial to understanding the inner galaxy as a whole. In ⁵⁸ this paper, we have selected 25 clouds in the Galactic ⁵⁹ bar region, including several located within B2 and G5 $_{60}$ and excluding the CMZ, that show bright NH₃ (3,3) ⁶¹ emission in the Mopra HOPS survey (Walsh et al. 2011; 62 Purcell et al. 2012; Longmore et al. 2017) and that have $_{63}$ broad lines ($\gtrsim 10$ km/s) and gas temperatures warmer ⁶⁴ than typical clouds in the Galactic disk ($\gtrsim 10-20$ K). We ⁶⁵ use the Atacama Large Millimeter/submillimeter Ar-66 ray (ALMA) Atacama Compact Array (ACA) to ob-67 serve several molecular lines from these 25 clouds in 68 order to probe physical parameters including tempera-⁶⁹ ture, shocks, ionization, star formation, and turbulence, 70 and to investigate whether these clouds are comprised 71 of molecular gas that is feeding or that has overshot the 72 CMZ. In Section 2 we describe the observations, ancil-

145

⁷³ lary data, and data reduction procedure. In Section 3
⁷⁴ we calculate and compare the temperature, turbulence,
⁷⁵ and star forming properties of the clouds. In Section
⁷⁶ 4 we look into the shock properties of the clouds. In
⁷⁷ Section 5 we discuss the locations of the clouds and the
⁷⁸ relationships between their properties, and we conclude
⁷⁹ in Section 6.

80 2. OBSERVATIONS AND DATA REDUCTION

2.1. ALMA Observations and Data Reduction

The spatial distribution of the 25 selected clouds are shown in Figure 1. Using a Galactic Center distance of 81 8178 ± 26 pc (Abuter et al. 2019) and an angle between 82 the Galactic bar and the line-of-sight of $30^{\circ} \pm 2^{\circ}$ (Wegg 82 et al. 2015), we can calculate the distance and Galac-87 tocentric radius of each cloud. We also include a 1 kpc 88 uncertainty along the line-of-sight to account for finite 99 bar thickness. The locations of each cloud are detailed 90 in Table 1. However, we note in Section 5 that it is likely 91 that many of the clouds in our sample are not located on 92 the bar, and so the Galactocentric radii and distances 93 may be inaccurate for the individual clouds.

The clouds were observed with the ALMA ACA 95 between May 2021 and May 2023 (project codes: 96 2019.2.00068.S, 2021.2.00001.S, 2022.1.00591.S; PI: Ott, ⁹⁷ J.) using both the 7m array and the Total Power (TP) ⁹⁸ antennas. We focus primarily on the TP data in this ⁹⁹ work. The spectral windows used cover several impor-100 tant spectral lines: the carbon monoxide isotopologues $_{101}$ ¹²CO $J = 2 \rightarrow 1$, ¹³CO $J = 2 \rightarrow 1$, and C¹⁸CO $_{102}$ $J = 2 \rightarrow 1$; the shock tracers SiO $J = 5 \rightarrow 4$ (Schilke ¹⁰³ et al. 1997) and CH₃OH $J = 4_{22} \rightarrow 3_{12}$ (Meier & Turner 104 2005); the formaldehyde lines H₂CO $J = 3_{03} \rightarrow 2_{02}$ and ¹⁰⁵ H₂CO $J = 3_{22} \rightarrow 2_{21}$; the dense molecular gas tracer $_{106}$ HC₃N $J = 24 \rightarrow 23$ (Mills et al. 2018); and the radio ¹⁰⁷ recombination line $H(30)\alpha$. The observing parameters of the spectral windows are shown in Table 2. 108

We used the default ALMA Pipeline Reduction, which utilized the Common Astronomy Software Application (CASA) versions 6.2.1.7-6.4.1.12 (The CASA Team 2 et al. 2022). We received 8 TP spectral cubes per cloud, 113 for a total of 200. Some of the TP data was processed 114 with the Single Dish Pipeline version 2022.2.0.64, which 115 was affected with an issue causing spurious dark and 116 bright spots in the data cubes; these were later repro-117 cessed and found to fulfill the quality assurance stan-118 dards. We recorded the velocity and channel ranges 119 without any spectral features and those covering the tar-120 get cloud for each cube.

The native FWHM beam size of the observations are between approximately 28" and 30". We smooth the cubes to all have the same beam size of 31". For each

Cloud	l	b	$R_{\rm Gal} \; [{\rm kpc}]$	$D \; [\mathrm{kpc}]$
1	8.68	-0.37	1.97 ± 0.09	6.54 ± 1.04
2	8.41	-0.29	1.92 ± 0.08	6.58 ± 1.04
3	6.91	-0.23	1.64 ± 0.08	6.81 ± 1.05
4	6.56	-0.30	1.57 ± 0.07	6.86 ± 1.05
6	5.75	0.23	1.40 ± 0.07	7.00 ± 1.06
7	5.49	-0.08	1.35 ± 0.07	7.04 ± 1.06
8	5.38	-0.12	1.32 ± 0.07	7.06 ± 1.06
10	3.43	-0.35	0.89 ± 0.05	7.42 ± 1.07
13	3.09	0.16	0.81 ± 0.04	7.49 ± 1.08
14	3.02	-0.07	0.79 ± 0.04	7.50 ± 1.08
15	2.96	-0.19	0.78 ± 0.04	7.52 ± 1.08
17	2.51	-0.03	0.67 ± 0.04	7.61 ± 1.08
18	1.93	0.11	0.52 ± 0.03	7.73 ± 1.09
19	358.48	-0.38	0.45 ± 0.03	8.57 ± 1.14
20	354.60	0.47	1.85 ± 0.14	9.82 ± 1.25
21	353.42	-0.36	2.36 ± 0.19	10.29 ± 1.30
22	351.79	-0.49	3.15 ± 0.27	11.02 ± 1.39
23	351.58	-0.34	$3.\overline{25\pm0.29}$	11.12 ± 1.40
24	350.18	0.02	4.04 ± 0.38	11.85 ± 1.51
25	350.11	0.09	4.09 ± 0.39	11.89 ± 1.51

Table 1. Locations of all clouds.

¹²⁴ cloud, we also regrid the cubes to match the ¹³CO J =¹²⁵ $2 \rightarrow 1$ pixel size and velocity resolution, resulting in a ¹²⁶ pixel size of 2.935" and a velocity resolution of 0.332 km ¹²⁷ s⁻¹. We then convert from intensity I_{ν} in units of Jy ¹²⁸ beam⁻¹ to a brightness temperature using the equation

¹²⁹
$$T_B = 1.222 \times 10^6 \left(\frac{I_{\nu}}{\text{Jy beam}^{-1}}\right) \left(\frac{\text{GHz}}{\nu^2}\right)^2 \left(\frac{"\times"}{\theta_{\min}\theta_{\max}}\right)$$
(1)

¹³⁰ where ν is the line rest frequency and $\theta_{\rm maj} = \theta_{\rm min} = 31$ " ¹³¹ are the FWHM beam size along the major and minor ¹³² axes of our smoothed data. To remove baselines, we ¹³³ also subtract a linear fit to the line-free channels.

2.2. ALMA Maps

To make moment 0 (integrated intensity) maps, we ¹³⁵ Set a cutoff at $4\sigma_{\rm rms}$, where we take $\sigma_{\rm rms}$ to be the root-¹³⁷ mean-square noise (rms) over the line-free channels, then ¹³⁸ integrate over the velocity range of the cloud in ¹³CO ¹³⁹ $J = 2 \rightarrow 1$, which is observed for all clouds and is ¹⁴⁰ less contaminated than the more common isotopologue ¹⁴¹ ¹²CO $J = 2 \rightarrow 1$. We also generated moment 1 (inten-¹⁴² sity weighted velocity), moment 2 (velocity dispersion), ¹⁴³ and moment 8 (peak intensity) maps from each cube ¹⁴⁴ using a 5σ cutoff on the moment 0 map. We estimate

$$\sigma \approx \sqrt{N} \sigma_{\rm rms} \Delta v \tag{2}$$

Figure 1. Spatial distribution of the 25 molecular clouds. The background is NH₃ (3,3) from the Mopra HOPS survey (Walsh et al. 2011; Purcell et al. 2012; Longmore et al. 2017). The overlays are our ¹³CO $J = 2 \rightarrow 1$ moment 0 maps from ALMA. The clouds G5 at $(\ell, b) = (+5.4, -0.4)$, Bania 1 (Bania et al. 1986) at $(\ell, b) = (-5.4, +0.4)$, and Bania 2 (Stark & Bania 1986) at $(\ell, b) = (+3, +0.2)$ are circled in red.

Spectral Line	Rest Frequency (GHz)	Bandwidth	No. of Channels
SiO $J = 5 \rightarrow 4$	217.10498	0.25	512
$\mathrm{H}_{2}\mathrm{CO}\ J = 3_{21} \rightarrow 2_{20}$	218.760066	0.25	512
$H_2CO \ J = 3_{03} \to 2_{02}$	218.222192	0.25	512
$\mathrm{HC}_3\mathrm{N}\ J = 24 \rightarrow 23$	218.324723	0.25	512
$CH_3OH J = 4_{22} \rightarrow 3_{12}$	218.44005000		
${\rm C^{18}O}\ J=2\rightarrow 1$	219.560358	0.25	1024
$^{13}\mathrm{CO}~J=2 \rightarrow 1$	220.3986842	0.25	1024
12 CO $J = 2 \rightarrow 1$	230.538	0.25	2048
$H(30)\alpha$	231.9009278	2	2048

Table 2. Observing parameters for each spectral window.

¹⁴⁶ where N is the number of channels integrated over for ¹⁴⁷ the moment 0 map and $\Delta v = 0.332$ km s⁻¹ is the veloc-¹⁴⁸ ity resolution. We then calculated ratio maps between ¹⁴⁹ each of the lines and both ¹²CO $J = 2 \rightarrow 1$ and ¹³CO ¹⁵⁰ $J = 2 \rightarrow 1$ using the respective moment 0 maps and the ¹⁵¹ peak intensity maps. For each moment 0 ratio map, we ¹⁵² calculate a corresponding error map, where the error dR¹⁵³ is

$$dR = R\sqrt{\left(\frac{\sigma_1}{M_1}\right)^2 + \left(\frac{\sigma_2}{M_2}\right)^2} \tag{3}$$

¹⁵⁵ where $M_i = \int I_v dv$ is the integrated intensity of line ¹⁵⁶ i, σ_i is the error of the moment 0 map (Eq. 2), and ¹⁵⁷ $R = \frac{M_1}{M_2}$ is the ratio between lines 1 and 2. We note ¹⁵⁸ that although σ is assumed to be constant across each ¹⁵⁹ moment 0 map (i.e. the rms of each pixel is assumed to be the same), the ratio error maps are not constant
since they are also functions of the individual moment 0
maps as well. The same holds for the temperature error
maps described in Section 3.

¹⁶⁴ We also create position-velocity (PV) diagrams ¹⁶⁵ for each cube using the packages **pvextractor** and ¹⁶⁶ **spectral-cube** (Ginsburg et al. 2019). We select a path ¹⁶⁷ going through the main regions of each cloud, then cal-¹⁶⁸ culate the PV diagram using the cloud velocity range, ¹⁶⁹ with an extra 10 km s⁻¹ on each side.

All clouds display clear emission for all three carbon monoxide isotopologues, though some other lines do not have a significant detection. The detected lines for each cloud are shown in Table 3.

NILIPOUR ET AL.

Cloud No.	SiO	$H_2CO(3_{21}-2_{20})$	$H_2CO(3_{03}-2_{02})$	HC ₃ N	CH ₃ OH	$\mathrm{H}(30)\alpha$	NH_3 (2, 2)	$NH_3 (6, 6)$
1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
2	\checkmark	\checkmark	 ✓ 		\checkmark		~	
3	\checkmark	\checkmark	 ✓ 		\checkmark		 ✓ 	
4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
6	\checkmark		\checkmark		\checkmark		\checkmark	
7			\checkmark					
8	\checkmark	\checkmark	\checkmark		\checkmark		 ✓ 	
10	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
13	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
14	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
15	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
17	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
18	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
19	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
20	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
21	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
22	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
23	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
24	\checkmark	✓	✓		\checkmark	\checkmark	 ✓ 	
25	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Table 3. Lines detected in each cloud. ¹²CO $J = 2 \rightarrow 1$, ¹³CO $J = 2 \rightarrow 1$, C¹⁸O $J = 2 \rightarrow 1$, NH₃ (1, 1), and NH₃ (3, 3) were detected in all clouds.

175

$2.3.1. \hspace{0.1in} \textit{HOPS}$

We use the H₂O Southern Galactic Plane Sur-176 vey (HOPS) (Walsh et al. 2011; Purcell et al. 177 178 2012; Longmore et al. 2017) for measurements of ¹⁷⁹ metastable ammonia inversion transitions with (J, K) =(1,1), (2,2), (3,3) and (6,6), for which the rotational 180 temperature is similar to the gas kinetic temperature 181 182 (Ott et al. 2005; Huettemeister et al. 1995). HOPS used ¹⁸³ the 22 m Mopra radio telescope, which has a main beam 184 FWHM of 2' at 12 mm (Urguhart et al. 2010). Further observation details about the HOPS ammonia catalog 185 $_{186}$ can be found in Purcell et al. (2012).

¹⁸⁷ The clouds were all initially selected to be bright in ¹⁸⁸ NH₃ (3,3) emission and all clouds were observed in the ¹⁸⁹ NH₃ (1,1), though not all clouds had significant NH₃ ¹⁹⁰ (2,2) or (6,6) emission. The ammonia line detections ¹⁹¹ are also shown in Table 3. For each cloud, we select a ¹⁹² region that covers the full extent of the cloud, which in ¹⁹³ general is larger than the ALMA FOV of the cloud. We ¹⁹⁴ then make a moment 0 map of each region for all four ¹⁹⁵ ammonia lines using the same velocity range as used for ¹⁹⁶ the ALMA moment maps.

197

2.3.2. Spitzer

¹⁹⁸ We additionally use data from two *Spitzer* Galactic ¹⁹⁹ plane surveys, the Galactic Legacy Infrared Midplane ²⁰⁰ Survey Extraordinaire (GLIMPSE; Churchwell et al. ²⁰¹ 2009) and the Multiband Imaging Photometer Galac-²⁰² tic Plane Survey (MIPSGAL; Rieke et al. 2004, Carey ²⁰³ et al. 2009). We use the cutout service of the Infrared ²⁰⁴ Science Archive (IRSA) to take 10' wide images contain-²⁰⁵ ing the central location of each cloud in the 4.5 and 8 ²⁰⁶ μ m bands of the Infrared Array Camera (IRAC; Fazio ²⁰⁷ et al. 2004) from GLIMPSE. We also take 30' wide im-²⁰⁸ ages of the same locations in the 24 μ m band of MIPS, ²⁰⁹ then regrid to match the pixel spacing of the GLIMPSE ²¹⁰ data using the reproject package.

Emission at 8 μ m, which is generally dominated by polycyclic aromatic hydrocarbons (PAHs), can be used as an indicator of star formation, because it traces freefree emission well (Rahman & Murray 2010; Cohen & Green 2001). Photoionization from UV sources, such as massive stars, gives rise to free-free emission, while UV photons at lower energies simultaneously excite PAHs, which then emit at several vibrational transitions, including several in the 8 μ m band (Allamandola et al. 1989). Near the centers of star-forming regions, where PAHs may be destroyed by extreme UV (EUV) and 227 A-ray photons (Povich et al. 2007), the 8 μ m band is weakened but continues to contain some dust continuum 224 emission.

279

289

 24μ m emission, which is dominated by thermal emis- sion from hot dust, also indirectly traces star formation, though it probes deeper into HII regions than PAH emis-sion (Watson et al. 2008).

229 3. GAS TEMPERATURES

We calculate gas temperatures for all of the clouds using emission from ammonia and formaldehyde.

232 3.1. Ammonia Temperature

We first calculate the rotational temperature using ammonia lines for each cloud following the same procedure outlined in Ott et al. (2005). Assuming the ammonia emission is optically thin, the column density of an ammonia inversion doublet can be calculated as

²³⁸
$$N(J,K) = \frac{7.77 \times 10^{13}}{\nu} \frac{J(J+1)}{K^2} \int T_{\rm B} dv \qquad (4)$$

²³⁹ (Henkel et al. 2000), where the column density N, rest ²⁴⁰ frequency ν , and integrated main-beam brightness tem-²⁴¹ perature have units cm⁻², GHz, and K km s⁻¹, respec-²⁴² tively. We have only metastable (J = K) inversions, ²⁴³ and the rotational temperature between two such states ²⁴⁴ can be found from the equation

$$\frac{N(J',J')}{N(J,J)} = \frac{g_{\rm op}(J')}{g_{\rm op}(J)} \frac{2J'+1}{2J+1} \exp\left(\frac{-\Delta E}{T_{JJ'}}\right)$$
(5)

²⁴⁶ where ΔE is the energy level difference between the NH₃ ²⁴⁷ (J', J') and NH₃ (J, J) transitions in K, and $g_{\rm op} = 1$ for ²⁴⁸ para-ammonia (i.e. NH₃ (1, 1) and (2, 2)) and $g_{\rm op} = 2$ ²⁴⁹ for ortho-ammonia (i.e. NH₃ (3, 3) and (6, 6)).

250 Solving for the rotational temperature gives

$$_{251} T_{JJ'} = \frac{-\Delta E}{\ln\left(\frac{N(J',J')}{g_{\rm op}(J')(2J'+1)}\right) - \ln\left(\frac{N(J,J)}{g_{\rm op}(J)(2J+1)}\right)} (6)$$

²⁵² For each cloud, we calculate a temperature map of T_{12} , ²⁵³ T_{13} , and T_{36} , or the largest possible subset of the three ²⁵⁴ given that some clouds do not have significant NH₃ (3,3) ²⁵⁵ or (6,6) emission, by applying Eqs. 4 - 6 to the pairs ²⁵⁶ of ammonia moment 0 maps, as well as a 5σ cutoff (Eq. ²⁵⁷ 2 on both moment 0 maps. We also calculate ammonia ²⁵⁸ temperature error maps,

$${}_{259} \qquad dT_{JJ'} = \frac{T^2}{\Delta E} \sqrt{\left(\frac{dN(J',J')}{N(J',J')}\right)^2 + \left(\frac{dN(J,J)}{N(J,J)}\right)^2} \tag{7}$$

260

261
$$dN(J,K) = \frac{7.77 \times 10^{13}}{\nu} \frac{J(J+1)}{K^2} \sigma$$

²⁶² where σ is the error of the integrated intensity map (Eq. 263 2). The ammonia temperature and error maps for all 264 clouds are shown in Figure 2

To get a single temperature value for each pair of ammonia lines, we take the temperature and error at the brightest pixel in NH_3 (3,3) moment 0 map. We show rotation diagrams (or Boltzmann diagrams) of the ammonia lines and the resultant temperature values in Figro ure 3

3.2. Formaldehyde Temperature

²⁷³ Next, we calculate the gas temperature based on the ²⁷⁴ line ratio of H₂CO $(3_{21} - 2_{20})$ to H₂CO $(3_{03} - 2_{02})$. We ²⁷⁵ take the ratio between the integrated intensity maps of ²⁷⁶ the two lines, described in Section 2.2, enforcing a 3σ ²⁷⁷ cutoff (Eq. 2) on both moment 0 maps. We then use ²⁷⁸ the formula

$$T_G = 590R_{H_2CO}^2 + 2.88R_{H_2CO} + 23.4 \tag{8}$$

which is a polynomial fit to the gas temperature and formaldehyde line ratio $R_{H_2CO} = \frac{\int I_v (3_{21}-2_{20})dv}{\int I_v (3_{03} \rightarrow 2_{02})dv}$ (Ginsburg et al. 2016) derived from the radiative transfer code RADEX (Tak et al. 2007). This fit uses an assumed gas density of $n(H_2) = 10^4$ cm⁻³, though the gas temperature has only a weak dependence on the assumed density. The resultant formaldehyde temperature and reror maps are shown in Figure 4. We also calculate temperature error maps,

$$dT_G = 1080RdR + 2.88dR \tag{9}$$

²⁹⁰ where dR is the error on the formaldehyde ratio (Eq. 3). ²⁹¹ Ideally, we would like to calculate the formaldehyde ²⁹² temperature at the same spatial location as the ammo-²⁹³ nia temperature. To do so, we return to the formalde-²⁹⁴ hyde data cubes and regrid them to the same spatial ²⁹⁵ and velocity resolution as the HOPS ammonia cubes. ²⁹⁶ We create a regridded temperature map using the same ²⁹⁷ procedure as above, then take the temperature (Eq. 8) ²⁹⁸ and error (Eq. 9) at the pixel with peak NH₃ (3,3) ²⁹⁹ integrated intensity.

We find that the peak NH₃ (3,3) pixel often lies far from the peak emission of the formaldehyde lines, and in one case lies outside the ALMA FOV of the corresonal sponding cloud. We thus also calculate a potentially taking the mean of the temperature walue by taking the mean of the temperature map at its original resolution within a 1' box centered on the pixel with maximum H₂CO $J = 3_{03} \rightarrow 2_{02}$ integrated intensity (light blue boxes in Figure 4). We take the error on this temperature to be the mean of the temperature error and within the same box.

We use this same box to calculate representative values for other properties of the ALMA data, such as the linewidths (Section 3.4) and ratio maps.

Figure 2. a) Ammonia temperature maps for each cloud, on the same color scale. The light green boxes indicate the ALMA FOV for the cloud. The pink circle is the Mopra HOPS beam, centered on the pixel with peak NH_3 (3,3) integrated intensity. The blue circles indicate the ALMA beamsize for comparison. *continued on next page*

316 3.3. Ammonia vs. Formaldehyde Temperature

A direct, quantitative comparison between the ammo-³¹⁷ A direct, quantitative comparison between the ammo-³¹⁸ nia and formaldehyde temperature measurements is dif-³¹⁹ ficult because of the large difference in beamsize between ³²⁰ the HOPS and ALMA data and the spatial distance be-³²¹ tween the peak NH₃ (3,3) and H₂CO $J = 3_{03} \rightarrow 2_{02}$ ³²² emission. We still plot the correlations between them in ³²³ Figure 5, but we find no significant correlation between ³²⁴ the ammonia and formaldehyde temperature. However, ³²⁵ there is a clear correlation between the ammonia tem-³²⁶ peratures calculated using the NH₃ (1,1) and (2,2) emis-³²⁷ sion versus that using the NH₃ (1,1) and (3,3) emis-³²⁸ sion, as well as between the formaldehyde temperature ³²⁹ taken at the pixel with peak NH₃ (3,3) emission versus ³³⁰ that averaged over a 1' box centered at the peak H₂CO ³³¹ $J = 3_{03} \rightarrow 2_{02}$ emission, both of which are expected.

Figure 2. b) Ammonia temperature error maps for each cloud, with the same overlays as a).

The lack of any correlation between the ammonia and formaldehyde temperatures indicates they are likely are likely tracing different gases. We compare the two thermometers in more detail in Section 5.2.

337 3.4. Temperature vs. Linewidth

We calculate a linewidth for each ALMA line by fiting a Gaussian to the mean spectrum of the 1' box centered on the peak pixel in the H₂CO $J = 3_{03} \rightarrow 2_{02}$ integrated intensity map. One cloud exhibits two com³⁴² ponents in its spectrum, so we fit a double Gaussian and
³⁴³ take the wider of the two. Figure 6 shows that there is
³⁴⁴ no correlation between the temperatures and linewidths
³⁴⁵ of the clouds, which is expected if the line broadening
³⁴⁶ is due to processes such as turbulence rather than ther³⁴⁷ mal broadening. We can calculate the expected degree
³⁴⁸ of thermal broadening for each cloud.

Assuming local thermal equilibrium, the thermal onedimensional velocities of molecules should follow a Maxwell-Boltzmann distribution,

Figure 3. Ammonia emission Boltzmann diagrams for all clouds. The points for each cloud are shifted down 3 dex relative to the previous cloud.

389

353
$$f(v) = \left(\frac{\mu \,\mathrm{m}_{\mathrm{H}}}{2\pi k_{B} T_{k}}\right)^{1/2} \,\exp\left(-\frac{\mu \,\mathrm{m}_{\mathrm{H}} v^{2}}{2k_{B} T_{k}}\right) \qquad (10)$$

³⁵⁴ where μ is the mean molecular weight of the gas, m_H ³⁵⁵ is the mass of the hydrogen atom, k_B is Boltzmann's ³⁵⁶ constant, and T_k is the kinetic temperature of the gas. ³⁵⁷ The thermal FWHM is then

$$\Delta v_{\rm th} = \left(8\ln 2\frac{k_B T_k}{\mu m_H}\right)^{1/2} \tag{11}$$

³⁵⁹ For formaldehyde, $\mu = 30$. Taking the calculated ³⁶⁰ formaldehyde temperatures of each cloud to be rep-³⁶¹ resentative of the kinetic temperature, we can calcu-³⁶² late a thermal linewidth, then calculate a nonthermal ³⁶³ linewidth corresponding to large- and small-scale veloc-³⁶⁴ ity variations and motions, using

$$\Delta v_{\rm nth} = \sqrt{\Delta v^2 - \Delta v_{\rm th}^2} \tag{12}$$

³⁶⁶ The nonthermal linewidths are significantly greater than ³⁶⁷ the thermal linewidths, which range from ~ 0.2 -0.5 km ³⁶⁸ s⁻¹, indicating that the gas is dominated by turbulence ³⁶⁹ and other non-thermal motions. The FWHM linewidths of formaldehyde in the clouds are ranges between ~4-50 km s⁻¹. The molecular clouds are in the Galactic disk studied by Larson (1981) have a are dimensional rms velocity dispersion between ~0.4are 9 km s⁻¹. The one-dimensional FWHM and threeare dimensional rms velocity dispersions are related by

$$\Delta v_{1/2} = \sqrt{8 \ln 2/3} v_{\rm rms} \tag{13}$$

³⁷⁷ The rms velocity dispersion range of our clouds is \sim 3-³⁷⁸ 40 km s⁻¹, with an average of 9.3 km s⁻¹, which lies ³⁷⁹ between the values expected of clouds in the Galactic ³⁸⁰ disk and clouds in the CMZ, the latter of which have ³⁸¹ FWHM linewidths on the order of 10-50 km s⁻¹ (eg. ³⁸² Tsuboi et al. 2015). This suggests that our cloud sample ³⁸³ may be intermediate between the clouds of the Galactic ³⁸⁴ disk and the clouds in the extreme conditions of the ³⁸⁵ CMZ.

We can approximate the sound speed of the cloud by assuming an isothermal gas with equation of state $P = \rho k_B T / (\mu m_{\rm H})$, in which case the sound speed is

$$c_s = \sqrt{k_B T_k / \mu m_H} \tag{14}$$

Figure 4. Formaldehyde temperature maps for each cloud, on the same color scale. The light blue boxes are 1' boxes centered on the pixel with peak H₂CO $J = 3_{03} \rightarrow 2_{02}$ integrated intensity. The blue circles indicate the beamsize. Clouds 6 and 7 do not show any H₂CO $J = 3_{21} \rightarrow 2_{20}$ emission and thus do not have formaldehyde temperature maps. *continued on next page*

(b)

Figure 4. b) Formaldehyde temperature error maps for each cloud, with the same overlays as a).

404

³⁹⁰ where $\mu = 2.34$ is now the mean molecular weight ³⁹¹ of a molecular cloud (Syed et al. 2020). The three-³⁹² dimensional Mach number, assuming isotropic turbu-³⁹³ lence, is then $\mathcal{M} = v_{\rm rms}/c_s$, where $v_{\rm rms}$ is the non-³⁹⁴ thermal three-dimensional rms velocity dispersion of Eq. ³⁹⁵ 13. The calculated Mach numbers range from 7 to 45, ³⁹⁶ with an average of 18.7 ± 12.7 . These values also lie be-³⁹⁷ tween those typical of molecular clouds in the Galactic ³⁹⁸ disk (\lesssim 5; eg. Tang et al. 2018, Syed et al. 2020) and ³⁹⁹ those observed in the CMZ (\gtrsim 25; eg. Kauffmann et al. ⁴⁰⁰ 2017, Henshaw et al. 2016).

⁴⁰¹ We take the errors in the total linewidths to be the ⁴⁰² errors on the Gaussian fits, then propagate accordingly ⁴⁰³ to get errors on the Mach numbers.

3.5. Star Formation

424

431

Figure 5. Correlations between different temperature measures. Mean T_{H_2CO} denotes the average formaldehyde temperature within a 1' box centered on the pixel with peak $H_2CO J = 3_{03} \rightarrow 2_{02}$ integrated intensity, whereas Pixel T_{H_2CO} denotes the formaldehyde temperature at the pixel with maximum NH₃ (3,3) integrated intensity once regridded to the ammonia resolution. T_{12} represents the ammonia temperature calculated using NH₃ (1,1) and (2,2), taken at the pixel with peak NH₃ (3,3) integrated intensity, and T_{13} is the ammonia temperature calculated using NH₃ (1,1) and (3,3) at the same pixel.

Figure 6. H₂CO FWHM linewidth against formaldehyde temperature. Both are calculated over a 1' box centered on the pixel with peak H₂CO $J = 3_{03} \rightarrow 2_{02}$ emission.

We can calculate the ionizing photon production rate, 406 Q, from measurements of H30 α , via

$$\frac{Q(\text{H}n\alpha)}{\text{s}^{-1}} = 3.99 \times 10^{24} \left(\frac{\alpha_B}{\text{cm}^3 \text{ s}^{-1}}\right) \left(\frac{\epsilon_{\nu}}{\text{erg s}^{-1} \text{ cm}^{-3}}\right)^{-1} \times \left(\frac{\nu}{\text{GHz}}\right) \left(\frac{D}{\text{kpc}}\right)^2 \left(\frac{\int F_v dv}{\text{Jy km s}^{-1}}\right)$$
(15)

⁴⁰⁸ (Scoville & Murchikova 2013; Bendo et al. 2017; Kim ⁴⁰⁹ et al. 2018) where α_B is the effective recombination co-⁴¹⁰ efficient and ϵ_{ν} is the emissivity, both of which are func-⁴¹¹ tions of electron density and temperature.

⁴¹² To estimate the electron temperature, we use the ⁴¹³ Galactic disk electron temperature gradient from ⁴¹⁴ Quireza et al. (2006),

$$T_e = (5780 \pm 350) + (287 \pm 46)R_{\text{Gal}}[\text{kpc}]$$
(16)

⁴¹⁶ which is an empirical fit to HII regions with electron ⁴¹⁷ temperatures derived from radio recombination line and ⁴¹⁸ continuum measurements, and Galactocentric distances ⁴¹⁹ calculated via radial velocity measurements. However, ⁴²⁰ we can also set an upper limit on the electron tempera-⁴²¹ ture using the linewidth of our H30 α observations. The ⁴²² thermal contribution to the linewidth is Gaussian and ⁴²³ has a FWHM of

$$\Delta v_{\rm th} = \left(8\ln 2\frac{k_{\rm B}T_e}{m_{\rm H}}\right)^{1/2} \tag{17}$$

⁴²⁵ (Rivera-Soto et al. 2020), which is the same form as Eq. ⁴²⁶ 11 but replacing the kinetic temperature with electron ⁴²⁷ temperature. Since the H30 α is at a high enough fre-⁴²⁸ quency for pressure broadening, which is proportional to ⁴²⁹ ν^{-4} , to be negligible (Keto et al. 2008), the total H30 α ⁴³⁰ line should be Gaussian and have a FWHM of

$$\Delta v = \sqrt{\Delta v_{\rm th}^2 + \Delta v_{\rm dy}^2} \tag{18}$$

⁴³² where Δv_{dy} is the dynamical contribution from unre-⁴³³ solved bulk motions. Thus, for the clouds whose electron ⁴³⁴ temperature calculated from Eq. 16 is greater than the ⁴³⁵ upper limit set by Eq. 17 (using the Gaussian linewidth ⁴³⁶ calculated in Section 3.4), we instead use the latter as an ⁴³⁷ upper limit on the electron temperature, with an error ⁴³⁸ derived from the linewidth uncertainty of the Gaussian ⁴³⁹ fit.

Whereas the value of the electron temperature can affect the ionizing photon production rate Q by a factor of up to ~2.5 over a temperature range from 3000 to 15000 K, the electron density has a relatively small effect on Q, with less than a 15% variation in both the recombination coefficient and emissivity over a density range from 10² and 10⁵ cm⁻³ (Bendo et al. 2017). We estimate the electron density using the fits of n_e against diameter of galactic HII regions by Hunt & Hirashita

11

⁴⁴⁹ (2009). To calculate sizes for our clouds, we collapse ⁴⁵⁰ the H30 α PV diagram along the velocity axis to create ⁴⁵¹ a 1D cloud profile, then fit a Gaussian. We take the ⁴⁵² angular diameter of the cloud to be 4σ , then calculate a ⁴⁵³ physical size using the distance to the cloud, assuming ⁴⁵⁴ it lies on the Galactic bar. The resulting cloud sizes all ⁴⁵⁵ lie within the range of 1 and 10 pc, which is covered by ⁴⁵⁶ the Kim et al. (2018) sample of compact Galactic HII ⁴⁵⁷ regions; Hunt & Hirashita finds a best-fit regression of

$$\log n_e \ [\mathrm{cm}^{-3}] = 2.8 - \log D \ [\mathrm{pc}]$$
 (19)

⁴⁶⁰ Using these calculated electron densities and temper-⁴⁶¹ atures, we interpolate the tables of α_B and ϵ_{ν} values ⁴⁶² published by Storey & Hummer (1995). We calculate ⁴⁶³ errors on these values using a simple Monte Carlo sim-⁴⁶⁴ ulation, assuming a normal distribution for T_e and n_e . ⁴⁶⁵ To calculate the integrated flux density of H30 α from ⁴⁶⁶ our moment 0 maps, we use a 1' box centered on the ⁴⁶⁷ pixel with peak H30 α integrated intensity, then take

468
$$\int F_v \, dv \, [\text{Jy km s}^{-1}] = \frac{2k_B \nu^2}{c^2} \iint T_B \, dv \, d\Omega$$
 (20)

⁴⁶⁹ where $\int T_B dv$ is the moment 0 map.

The quantities derived from the H30 α line, including 471 the ionizing photon production rate Q, are shown for all 472 the clouds with H30 α detection in Table 4. The resul-473 tant Q values are all consistent, within error bars, with 474 O stars, which have $\log_{10}Q$ values between 47.88 for an 475 O9.5 star and 49.64 for a an O3 star (Martins et al. 476 2005).

477 We also calculate upper limits on Q values for the 478 clouds without significant H30 α detections. We take 479 the upper limit on the integrated flux density to be

$$\int F_v \, dv \, [\text{Jy km s}^{-1}] \le \frac{2k_B \nu^2}{c^2} \sigma \sqrt{N} \qquad (21)$$

⁴⁸¹ where σ is the error on the H30 α moment 0 map (2) and ⁴⁸² N is the number of pixels in a 1' box on the map. We ⁴⁸³ use the electron temperature gradient (16) to estimate ⁴⁸⁴ electron temperatures for each cloud, and use the mean ⁴⁸⁵ of the electron densities of clouds with H30 α detections ⁴⁸⁶ as an estimate for the electron density of clouds with no ⁴⁸⁷ detection. We use an α_B and ϵ_{ν} value interpolated from ⁴⁸⁸ the electron temperature and density and calculate a ⁴⁸⁹ photoionizing photon production rate using Eq. 15; we ⁴⁹⁰ take a 2σ upper limit of twice this Q value. The same ⁴⁹¹ method is used to calculate errors on the Q values for ⁴⁹² clouds with H30 α emission.

Figure 7 shows that there is generally a correlation 494 between the presence and location of H30 α and both 8 495 μ m and 24 μ m emission, though there are also a few ⁴⁹⁶ clouds with 24 μ m emission consistent with the location ⁴⁹⁷ of formaldehyde emission that do not display any emis-⁴⁹⁸ sion in H30 α . We can estimate the star formation rate ⁴⁹⁹ in the clouds from 24 μ m emission using the relationship ⁵⁰⁰ from Calzetti et al. (2007),

SFR
$$[M_{\odot} \text{ yr}^{-1}] = 1.27 \times 10^{-38} (L_{24\mu \text{m}} \text{ [ergs s}^{-1}])^{0.8850}$$
(22)

⁵⁰² where $L_{24\mu m} = \nu L(\nu)$. This relation is derived from ⁵⁰³ extragalactic star-forming regions, so may not be fully ⁵⁰⁴ applicable to our clouds. For comparison, we also cal-⁵⁰⁵ culate a star formation rate from the ionizing photon ⁵⁰⁶ production rate using a conversion from Q to SFR of ⁵⁰⁷ $7.29 \times 10^{-54} \text{ M}_{\odot} \text{yr}^{-1}/\text{s}^{-1}$ (Murphy et al. 2011), which ⁵⁰⁸ is calculated using STARBURST99 (Leitherer et al. 1999) ⁵⁰⁹ and also applies primarily to the galactic scale. It also ⁵¹⁰ assumes solar metallicity and a constant SFR over about ⁵¹¹ 100 Myr.

The 24 μ m MIPSGAL processing pipeline masks artifacts in the data, which are particularly prevalent around bright sources (Mizuno et al. 2008). Most of the clouds with H30 α emission, which are also bright in the mid-IR, are thus masked, as can be seen in Figure 7. To mitigate this effect, we interpolate the missing values, though this is imperfect as the masked pixels are generally around the brightest locations.

We integrate the 24 μ m emission, which is given in ⁵²¹ units of MJy/sr, over a 2' box centered on the location ⁵²² with peak H30 α integrated intensity. We choose a larger ⁵²³ box size than for calculating the H30 α flux density be-⁵²⁴ cause we expect the emission to be more extended, as ⁵²⁵ the 24 μ m emission comes from dust around the star-⁵²⁶ forming region whereas H30 α emission comes from, or ⁵²⁷ closer to, the ionized region. We convert these fluxes ⁵²⁸ into luminosities using their distances, then calculate ⁵²⁹ the SFR with Eq. 22.

To calculate errors on the SFR of these clouds, as ⁵³¹ well as upper limits on the clouds with no detection, ⁵³² we use the uncertainty maps provided by MIPSGAL. ⁵³³ For the clouds with detections, we add the pixel errors ⁵³⁴ in quadrature over the integration box and multiply by ⁵³⁵ the pixel spacing to get a flux density error; for the other ⁵³⁶ clouds, we take the mean over the uncertainty map and ⁵³⁷ multiply by the square root of the number of pixels in ⁵³⁸ a 2' box and the pixel spacing. We then propagate the ⁵³⁹ distance error and the errors in the parameters of Eq. ⁵⁴⁰ 22 appropriately to get an error. We again use a 2σ ⁵⁴¹ detection as an upper limit.

A comparison between the two SFR measures is shown ⁵⁴³ in Figure 8. The values generally agree, though us-⁵⁴⁴ ing H30 α tends to underestimate the SFR compared to ⁵⁴⁵ value derived from 24 μ m emission. We are also able to ⁵⁴⁶ place stricter upper limits using H30 α .

FEEDING THE CMZ

Cloud No.	$\Delta v \; [\mathrm{km \; s^{-1}}]$	T_e [K]	$d_{{\rm H}30\alpha}~[{\rm pc}]$	$n_e [\mathrm{cm}_{-3}]$	$\int F_v dv \; [\text{Jy km s}^{-1}]$	$\log_{10}Q \ [s^{-1}]$
1	27.21 ± 1.04	6346.62 ± 362.44	1.85 ± 0.35	341.40 ± 64.64	28.94 ± 0.07	48.28 ± 0.14
20	38.99 ± 2.09	6310.61 ± 362.45	3.51 ± 0.49	179.77 ± 25.03	5.50 ± 0.05	47.90 ± 0.12
21	26.62 ± 0.22	6457.10 ± 370.49	5.36 ± 0.68	117.70 ± 15.03	147.07 ± 0.08	49.37 ± 0.12
22	10.18 ± 0.81	$\leq 2267.33 \pm 359.82$	2.50 ± 0.35	252.32 ± 34.97	13.31 ± 0.17	48.10 ± 0.17
23	25.41 ± 1.07	6713.92 ± 389.49	3.63 ± 0.46	173.90 ± 21.97	61.63 ± 0.06	49.07 ± 0.12
24	26.62 ± 1.78	6939.81 ± 411.34	4.92 ± 0.68	128.36 ± 17.80	1.95 ± 0.05	47.64 ± 0.12
25	28.15 ± 0.24	6952.76 ± 412.73	4.13 ± 0.54	152.65 ± 19.84	135.03 ± 0.10	49.48 ± 0.12

Table 4. H30 α derived quantities.

⁵⁴⁷ Calzetti et al. (2007) notes that emission at 8 μ m. ⁵⁴⁸ while correlated with star formation, also depends ⁵⁴⁹ strongly on metallicity and size, so we do not calcu-⁵⁵⁰ late a SFR using the 8 μ m emission from GLIMPSE. ⁵⁵¹ We note, however, that 8 μ m emission is present for all ⁵⁵² clouds that exhibit 24 μ m emission.

4. SHOCKS

Both methanol (CH₃OH) and SiO are associated with from the presence of shocks (Meier & Turner 2005; Schilke states at al. 1997), though they trace different shock velocities. Generation which may result from weak shocks with $v_s \leq 10$ from s⁻¹ (Bergin et al. 1998). On the other hand, SiO formation requires more energetic grain processing through grain core or mantle erosion, which can occur in shocks with $v_s \geq 25$ km s⁻¹ (Garay et al. 2000).

SiO and CH_3OH are both detected in all clouds except cloud 7.

567

555

572

4.1. SiO

We can calculate the column density of SiO, with several assumptions. We assume optically thin emission, trees a Rayleigh-Jeans approximation, and negligible background. Then, the column density is

$$N_{\rm tot} = \left(\frac{3k_B}{8\pi^3\nu S\mu^2}\right) \left(\frac{Q_{\rm rot}}{g_J g_K g_I}\right) \exp\left(\frac{E_u}{k_B T_{\rm ex}}\right) \int \frac{T_B dv}{f}$$
(23)

⁵⁷³ (Mangum & Shirley 2015), where $Q_{\rm rot}$ is the partition ⁵⁷⁴ function, g_i are the degeneracies, μ is the dipole moment ⁵⁷⁵ of the molecule, S is the intrinsic line strength, E_u is the ⁵⁷⁶ upper energy level, $T_{\rm ex}$ is the excitation temperature of ⁵⁷⁷ the gas, and f is the beam filling factor. Assuming LTE, ⁵⁷⁸ we have $T_{\rm ex} = T_{\rm k}$. Although the formaldehyde and SiO ⁵⁷⁹ may not trace the same gas, we take the formaldehyde ⁵⁸⁰ gas temperature to be the kinetic temperature of the ⁵⁸¹ SiO. For a linear molecule like SiO, we have $g_J = 2J+1$, ⁵⁸² $g_K = g_I = 1$, $Q_{\rm rot} = \sum_{J=0}^{\infty} (2J+1) \exp(-\frac{E_J}{kT})$, and ⁵⁸³ $S = \frac{J}{2J+1}$. For a diatomic molecule, the rotational en-⁵⁸⁴ ergy levels are $E_J \approx hBJ(J+1)$, where $B = \frac{h}{4\pi I}$ is the ⁵⁸⁵ rotational constant of the molecule. For SiO in particu⁵⁸⁶ lar, the dipole moment is $\mu = 3.0982$ Debye (Raymonda ⁵⁸⁷ et al. 1970) and the rotational constant is B = 21787.5⁵⁸⁸ MHz (Lowry Manson et al. 1977). We assume the beam ⁵⁸⁹ filling factor is 1.

We use the average integrated intensity of SiO J =⁵⁹⁰ $5 \rightarrow 4$ within the same 1' box that the formaldehyde ⁵⁹² temperature is calculated in to derive column density ⁵⁹³ values. We note that the minimum formaldehyde tem-⁵⁹⁴ perature across the clouds is about 25 K, and at a fre-⁵⁹⁵ quency of 217 GHz, so Figure 3 of Mangum & Shirley ⁵⁹⁶ (2015) tells us to expect that our column density calcu-⁵⁹⁷ lations with the Rayleigh-Jeans approximation and as-⁵⁹⁸ suming negligible background should agree within 1% to ⁵⁹⁹ column densities calculated without these assumptions ⁶⁰⁰ (though still assuming optically thin emission and LTE) ⁶⁰¹ for the majority of the clouds.

We also calculate column densities of ¹³CO and C¹⁸O $J = 2 \rightarrow 1$ to obtain SiO abundances. Since it is likely these lines are optically thin, compared to their isotopologue ¹²CO, we can again use Eq. 23. CO is also a linear, diatomic molecule, so the only changes apart from the frequency are the dipole moments and rotational constants of the molecules, which are $\mu = 0.11046$ Debye and B = 55101.011 MHz for ¹³CO, and are $\mu = 0.11079$ Debye and B = 54891.420 MHz for C¹⁸O¹.

The ${}^{12}C/{}^{13}C$ and ${}^{16}O/{}^{18}O$ isotope abundance ratios increase with Galactocentric radius (Langer & Penzias 1990). We use the equations

$${}_{4} \qquad {}^{12}C/{}^{13}C = (7.5 \pm 1.9)R_{\rm Gal} + (7.6 \pm 12.9) \qquad (24)$$

615 and

61

16
 $^{16}O/^{18}O = (58.8 \pm 11.8)R_{\text{Gal}} + (37.1 \pm 82.6)$ (25)

⁶¹⁷ from Wilson & Rood (1994). The CO column densi-⁶¹⁸ ties derived from the two isotopologues agree well; the ⁶¹⁹ SiO abundances (N(SiO)/N(H₂) derived from both are ⁶²⁰ shown in Figure 9, where we have assumed a ¹²CO to ⁶²² H₂ ratio of 10^{-4} .

¹ Values taken from https://spec.jpl.nasa.gov/

Figure 7. Three-color *Spitzer* images of the clouds with H30 α emission, with GLIMPSE 4.5 μ m, GLIMPSE 8 μ m, and MIPSGAL 24 μ m in blue, green, and red, respectively. The contours show H30 α integrated intensity, and the orange boxes depict the ALMA FOV. The 24 μ m data contains artifacts at bright spots, so they are masked by the MIPSGAL processing pipeline.

Shocks can enhance the abundance of SiO to values greater than 10^{-10} compared to ambient values of 10^{-12} to 10^{-11} (Schilke et al. 1997; Garay et al. 2000), and they have been shown to enhance abundances to values as high as 10^{-6} at extreme velocities (Martin-Pintado et al. 1992). Many of the clouds in our sample exhibit siO abundances above 10^{-10} , with some exceeding 10^{-9} , indicating that the gas in these clouds are likely undergoing shocks. ⁶³³ We use the line ratio of CH₃OH $J = 4_{22} \rightarrow 3_{12}$ to ⁶³⁴ ¹³CO $J = 2 \rightarrow 1$ to assess the weak shocks associated ⁶³⁵ with methanol emission. We take the mean value of the ⁶³⁶ 1' box centered on the pixel with peak H₂CO $J = 3_{03} \rightarrow$ ⁶³⁷ 2₀₂ emission, and we take the error to be the mean of ⁶³⁸ the ratio error map within the same box.

Figure 10 shows that the methanol line ratio is wellcorrelated with the formaldehyde temperature, but it has no correlation with the ammonia temperature.

643

5. DISCUSSION

Figure 8. Comparison of SFR calculated using H30 α emission versus that calculated using 24 μ m emission from *Spitzer*. The blue line assumes the two are equal.

Figure 9. Comparison of SiO abundances calculated using the column density of 18 CO and 13 CO. The dashed black line assumes the two are equal. The two methods are consistent with each other, as expected.

5.1. Galactocentric Radius

644

We show the distribution of SFR, temperature, turbu-645 lent Mach number, and SiO abundance ratio on Galac-646 tocentric radius, assuming that the clouds lie on the bar, 647 ⁶⁴⁸ in Figure 11. Similarly, Figure 12 show the same properties as a function of position along the bar. We find 649 ⁶⁵⁰ that the SFR appears to be higher at further distances from the Galactic Center, with star formation largely in-651 ⁶⁵² hibited for clouds closer to the Galactic Center. On the ⁶⁵³ other hand, the clouds at a smaller Galactocentric radius appear to be more turbulent, which may be inhibiting 654 655 star formation. There also appears to be a strong asym-⁶⁵⁶ metry between the SFR and turbulence of clouds on the near and far sides of the bar. 657

⁶⁵⁸ Temperature, traced by both ammonia and formalde-

Figure 10. $CH_3OH/^{13}CO$ line ratio as a function of formaldehyde temperature.

⁶⁵⁹ hyde, appear to be less position dependent, as do shocks,
⁶⁶⁰ traced by SiO abundance. This may be expected, as
⁶⁶¹ both turbulence and star formation can cause heating
⁶⁶² and shocks.

⁶⁶³ However, while there is a known asymmetry in the ⁶⁶⁴ CMZ (eg. Sormani et al. 2018), we do not expect it to ⁶⁶⁵ be this prominent nor extend out to a radius of over 4 ⁶⁶⁶ kpc. Additionally, our sample at $\ell < 0$ and $\ell > 0$ covers ⁶⁶⁷ complementary Galactocentric radii, with the clouds at ⁶⁶⁸ $\ell < 0$ mostly at $R_{\text{Gal}} > 2$ kpc and clouds at $\ell > 0$ ⁶⁶⁹ mostly at $0.5 < R_{\text{Gal}} < 2$ kpc, which makes it difficult ⁶⁷⁰ to directly compare all the clouds.

Figure 13 shows the uncertainty involved in the positions of the clouds in our sample. Even if all the clouds of the clouds on the Galactic bar, the clouds on the near and far sides of the bar are likely in different regions of the bar. In particular, the geometry on the far side of the bar is much more uncertain due to projection effects.

To determine whether or not the clouds do lie on 679 680 the bar, we can look at the locations of the cloud on $_{681}$ a longitude-velocity, or ℓ -v, diagram. This is shown in ⁶⁸² Figure 14. We see that many of the clouds are consistent ⁶⁸³ with being in the Galactic disk, which is the generally ⁶⁸⁴ flat feature at all longitudes around a velocity of 0 km/s, 685 and the dust lane features are at higher velocities than ⁶⁸⁶ all of our clouds. This indicates that the clouds are likely 687 not in the Galactic bar. However, the groups of clouds around $\ell = 5.4^{\circ}$ and $\ell = 2.5^{\circ}$ appear to be associated ⁶⁸⁹ with the cloud clumps G5 and B2, respectively. G5 may ⁶⁹⁰ be the location of gas from the far side dust lane that ⁶⁹¹ has overshot the CMZ and is colliding with the near side ⁶⁹² dust lane, and B2 may be the location of gas in the near ⁶⁹³ side dust line colliding with the CMZ itself (Sormani ⁶⁹⁴ et al. 2018). The clouds in these associations may be 695 the most interesting candidates for additional analysis. Regardless of position, we find an inverse relationship 696

Distribution of Cloud Properties

Figure 11. Distribution of properties as a function of Galactocentric distance.

⁶⁹⁷ between SFR and turbulent Mach number, which may ⁶⁹⁸ support the idea that turbulence inhibits star formation.

5.2. Temperature

701

723

The formaldehyde and ammonia thermometers appear To be tracing different gas in the clouds. The ammonia temperature is well-correlated with the turbulent Mach To number, whereas the formaldehyde temperature is not. To On the other hand, the opposite is true for correlations To with the $CH_3OH/^{13}CO$ line ratio, which is a weak shock To tracer. Furthermore, the hot molecular cores seen in To the formaldehyde temperature maps are generally not To present in the ammonia temperature maps.

There are several possible reasons for this difference. The may be that formaldehyde is more sensitive to heat-The form star formation and that ammonia is more sen-The sensitive to turbulent heating. Formaldehyde may also be The more sensitive to shock heating, or that shocks from SF enhance methanol abundance more than turbulent The SF enhance methanol abundance more diffuse gas The than formaldehyde, so the difference may also be due The than formaldehyde, so the difference may also be due The to differences in the properties and kinematics of gas The than formaldehyde. More analysis is needed to better The the relationships between the ammonia and The thermometers.

6. CONCLUSION

We observed the molecular lines SiO $J = 5 \rightarrow 4$,

- 752 Abuter, R., Amorim, A., Bauböck, M., et al. 2019,
- Astronomy & Astrophysics, 625, L10,
- 754 doi: 10.1051/0004-6361/201935656
- 755 Allamandola, L. J., Tielens, A. G. G. M., & Barker, J. R.
- ⁷⁵⁶ 1989, The Astrophysical Journal Supplement Series, 71,
 ⁷⁵⁷ 733, doi: 10.1086/191396
- ⁷⁵⁸ Bania, T. M., Stark, A. A., & Heiligman, G. M. 1986, The
 ⁷⁵⁹ Astrophysical Journal, 307, 350, doi: 10.1086/164422
- 760 Bendo, G. J., Miura, R. E., Espada, D., et al. 2017,
- Monthly Notices of the Royal Astronomical Society, 472,
 1239, doi: 10.1093/mnras/stx1837
- 763 Bergin, E. A., Melnick, G. J., & Neufeld, D. A. 1998, The
- ⁷⁶⁴ Astrophysical Journal, 499, 777, doi: 10.1086/305656
- 765 Binney, J., Gerhard, O. E., Stark, A. A., Bally, J., &
- ⁷⁶⁶ Uchida, K. I. 1991, Monthly Notices of the Royal
- 767 Astronomical Society, 252, 210,
- ⁷⁶⁸ doi: 10.1093/mnras/252.2.210

⁷²⁵ H₂CO $J = 3_{21} \rightarrow 2_{20}$, H₂CO $J = 3_{03} \rightarrow 2_{02}$, HC₃N ⁷²⁶ $J = 24 \rightarrow 23$, CH₃OH $J = 4_{22} \rightarrow 3_{12}$, C¹⁸O $J = 2 \rightarrow 1$, ⁷²⁷ ¹³CO $J = 2 \rightarrow 1$, ¹²CO $J = 2 \rightarrow 1$, and H30 α for 25 ⁷²⁸ clouds in the inner Galactic disk outside the CMZ. These ⁷²⁹ spectral lines probe several processes, and we measure ⁷³⁰ temperatures, shocks, turbulence, and SFRs for all the ⁷³¹ clouds.

We find that the properties of the clouds are consistent with not being on the Galactic bar, but several of the clouds are likely associated with regions of high velocity several gas collisions. These clouds in particular should be the subject of future study. We further find that turbulence may be inhibiting star formation in many of the clouds rate in our sample, and that the ammonia and formaldehyde rate ther investigation is needed for these findings.

⁷⁴¹ AN would like to thank Dr. Juergen Ott, Dr. David
⁷⁴² Meier, and Dr. Brian Svoboda for their research guid⁷⁴³ ance, the National Radio Astronomy Observatory for
⁷⁴⁴ the opportunity to complete this summer research, and
⁷⁴⁵ Dr. Mattia Sormani for helpful discussion about the
⁷⁴⁶ Galactic bar.

Software: Python, IPython (Perez & Granger 2007),
NumPy (Harris et al. 2020), Matplotlib (Hunter 2007),
SciPy (Virtanen et al. 2020), Astropy (The Astropy Collaboration et al. 2022), spectral-cube (Ginsburg et al.
2019), CASA (The CASA Team et al. 2022)

REFERENCES

- 769 Bitran, M., Alvarez, H., Bronfman, L., May, J., &
- Thaddeus, P. 1997, Astronomy and Astrophysics
- 771 Supplement Series, 125, 99, doi: 10.1051/aas:1997214
- 772 Bland-Hawthorn, J., & Gerhard, O. 2016, Annual Review
- ⁷⁷³ of Astronomy and Astrophysics, 54, 529,
- 774 doi: 10.1146/annurev-astro-081915-023441
- 775 Calzetti, D., Kennicutt, R. C., Engelbracht, C. W., et al.
- ⁷⁷⁶ 2007, The Astrophysical Journal, 666, 870,
- 777 doi: 10.1086/520082
- 778 Carey, S. J., Noriega-Crespo, A., Mizuno, D. R., et al. 2009,
- Publications of the Astronomical Society of the Pacific,
 121, 76, doi: 10.1086/596581
- 781 Churchwell, E., Babler, B. L., Meade, M. R., et al. 2009,
- 782 Publications of the Astronomical Society of the Pacific,
- 783 121, 213, doi: 10.1086/597811
- 784 Cohen, M., & Green, A. J. 2001, Monthly Notices of the
- ⁷⁸⁵ Royal Astronomical Society, 325, 531,
- 786 doi: 10.1046/j.1365-8711.2001.04421.x

Distribution of Cloud Properties

Figure 12. Distribution of properties as a function of position along the bar.

Figure 13. Geometry of bar, assuming a range of bar-sun angles from 20° to 40°. Regardless of angle, it appears that negative ℓ sources are at different Galactic locations than positive ℓ , even if they all lie on the bar.

Figure 14. The longitude-velocity $(\ell$ -v) distribution of our cloud sample overlaid on CO $J = 1 \rightarrow 0$ emission from Bitran et al. (1997), in blue. The black vertical stripes are the velocity spectra of each of our clouds, located horizontally at the cloud's longitude. The red boxes are centered on the central velocity of each cloud.

- 787 Contopoulos, G., & Grosbøl, P. 1989, The Astronomy and
- Astrophysics Review, 1, 261, doi: 10.1007/BF00873080 788
- azio, G. G., Hora, J. L., Allen, L. E., et al. 2004, The 789
- Astrophysical Journal Supplement Series, 154, 10, 790
- doi: 10.1086/422843 791
- Garay, G., Mardones, D., & Rodríguez, L. F. 2000, The 792
- Astrophysical Journal, 545, 861, doi: 10.1086/317853 793
- 794 Ginsburg, A., Henkel, C., Ao, Y., et al. 2016, Astronomy
- and Astrophysics, 586, A50, 795
- doi: 10.1051/0004-6361/201526100 796
- Ginsburg, A., Koch, E., Robitaille, T., et al. 2019, 797
- radio-astro-tools/spectral-cube: Release v0.4.5, Zenodo, 798 doi: 10.5281/zenodo.3558614 799
- Harris, C. R., Millman, K. J., Van Der Walt, S. J., et al. 800
- 801
 - 2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2

- 802 Hatchfield, H. P., Sormani, M. C., Tress, R. G., et al. 2021,
- The Astrophysical Journal, 922, 79, 803
- doi: 10.3847/1538-4357/ac1e89 804
- Henkel, C., Mauersberger, R., Peck, A. B., Falcke, H., & 805
- Hagiwara, Y. 2000, Astronomy and Astrophysics, 361, 806
- L45, doi: 10.48550/arXiv.astro-ph/0010519 807
- Henshaw, J. D., Longmore, S. N., Kruijssen, J. M. D., et al. 808 2016, Monthly Notices of the Royal Astronomical 809
- Society, 457, 2675, doi: 10.1093/mnras/stw121 810
- 811 Huettemeister, S., Wilson, T. L., Mauersberger, R., et al.
- 1995, Astronomy and Astrophysics, 294, 667. 812
- https://ui.adsabs.harvard.edu/abs/1995A&A...294..667H 813
- 814 Hunt, L. K., & Hirashita, H. 2009, Astronomy and
- Astrophysics, 507, 1327, 815
- doi: 10.1051/0004-6361/200912020 816

817 Hunter, J. D. 2007, Computing in Science & Engineering, 9,	867 Murphy, E. J., Condon, J. J., Schinnerer, E., et al. 2011,
818 90, doi: 10.1109/MCSE.2007.55	The Astrophysical Journal, 737, 67,
⁸¹⁹ Jones, P. A., Burton, M. G., Cunningham, M. R., et al.	doi: 10.1088/0004-637X/737/2/67
2012, Monthly Notices of the Royal Astronomical	870 Oka, T., Geballe, T. R., Goto, M., Usuda, T., & McCall,
Society, 419, 2961, doi: 10.1111/j.1365-2966.2011.19941.x	⁸⁷¹ B. J. 2005, The Astrophysical Journal, 632, 882,
822 Kauffmann, J., Pillai, T., Zhang, Q., et al. 2017,	arz doi: 10.1086/432679
Astronomy & Astrophysics, 603, A89,	873 Ott. J., Weiss, A., Henkel, C., & Walter, F. 2005, The
doi: 10.1051/0004-6361/201628088	874 Astrophysical Journal, 629, 767, doi: 10.1086/431661
825 Keto, E., Zhang, Q., & Kurtz, S. 2008, The Astrophysical	875 Perez, F., & Granger, B. F. 2007, Computing in Science &
Journal, 672, 423, doi: 10.1086/522570	⁸⁷⁶ Engineering 9 21 doi: 10.1109/MCSE 2007.53
827 Kim, W. J., Urquhart, J. S., Wyrowski, F., Menten, K. M.,	⁹⁷⁷ Povich M S Stone I M Churchwell E et al 2007 The
& Csengeri, T. 2018, Astronomy and Astrophysics, 616,	Astrophysical Journal 660 346 doi: 10.1086/513073
A107, doi: 10.1051/0004-6361/201732330	²⁷⁰ Purcell C B Longmore S N Walsh A I et al 2012
830 Kruijssen, J. M. D., Longmore, S. N., Elmegreen, B. G.,	Monthly Notices of the Boyal Astronomical Society 426
et al. 2014, Monthly Notices of the Royal Astronomical	1972 doi: 10.1111/i.1365-2966.2012.21800 x
⁸³² Society, 440, 3370, doi: 10.1093/mnras/stu494	\sim Ouiroza C Bood B T Bania T M Baker D S k
833 Krumholz, M. R., Kruijssen, J. M. D., & Crocker, R. M.	Mariel W. I. 2006. The Astrophysical Journal 653
⁸³⁴ 2017, Monthly Notices of the Royal Astronomical	1226 doi: 10.1086/508803
⁸³⁵ Society, 466, 1213, doi: 10.1093/mnras/stw3195	Bahman M. & Murray N 2010 The Astrophysical
836 Langer, W. D., & Penzias, A. A. 1990, The Astrophysical	⁸⁶⁵ Iournal, M., & Multay, N. 2010, The Astrophysical
⁸³⁷ Journal, 357, 477, doi: 10.1086/168935	Burnarda, I.W. Muenter, I.S. & Klemperer, W.A.
838 Larson, R. B. 1981, Monthly Notices of the Royal	1070 Journal of Chamical Division 52, 2459
Astronomical Society, 194, 809,	⁸⁸⁸ 1970, Journal of Chemical Physics, 52, 5456,
doi: 10.1093/mnras/194.4.809	889 doi: 10.1005/1.1075510
841 Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999,	⁸⁹⁰ Rieke, G. H., Young, E. T., Engelbracht, C. W., et al. 2004, The Astrophysical Journal Cumplement Spring, 154–25
⁸⁴² The Astrophysical Journal Supplement Series, 123, 3,	⁸⁹¹ The Astrophysical Journal Supplement Series, 154, 25,
843 doi: 10.1086/313233	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
844 Longmore, S. N., Walsh, A. J., Purcell, C. R., et al. 2017,	⁸⁹³ Rivera-Soto, R., Galvan-Madrid, R., Ginsburg, A., &
⁸⁴⁵ Monthly Notices of the Royal Astronomical Society, 470,	⁸⁹⁴ Kurtz, S. 2020, The Astrophysical Journal, 899, 94,
846 1462, doi: 10.1093/mnras/stx1226	$\begin{array}{c} \text{abs: } 10.3847/1038-4307/aba749 \\ Chill D Where C M Discrete C for a state of the constraint of the constrain$
847 Lowry Manson, E., Clark, W. W., De Lucia, F. C., &	⁸⁹⁶ Schlike, P., Walmsley, C. M., Pineau des Forets, G., &
⁸⁴⁸ Gordy, W. 1977, Physical Review A, 15, 223,	⁸⁹⁷ Flower, D. R. 1997, Astronomy and Astrophysics, 321,
⁸⁴⁹ doi: 10.1103/PhysRevA.15.223	898 293.
850 Mangum, J. G., & Shirley, Y. L. 2015, Publications of the	⁸⁹⁹ https://ul.adsabs.harvard.edu/abs/1997A&A3212935
Astronomical Society of the Pacific, 127, 266,	⁹⁰⁰ Scoville, N., & Murchikova, L. 2013, The Astrophysical
doi: 10.1086/680323	$_{901}$ Journal, (19, 15, doi: 10.1088/0004-637X/(19/1/15)
853 Martin-Pintado, J., Bachiller, R., & Fuente, A. 1992,	⁹⁰² Sormani, M. C., & Barnes, A. T. 2019, Monthly Notices of
Astronomy and Astrophysics, 254, 315.	$_{903}$ the Royal Astronomical Society, 484, 1213,
https://ui.adsabs.harvard.edu/abs/1992A&A254315M	904 doi: $10.1093/mnras/stz046$
856 Martins, F., Schaerer, D., & Hillier, D. J. 2005, Astronomy	905 Sormani, M. C., Binney, J., & Magorrian, J. 2015, Monthly
and Astrophysics, 436, 1049,	⁹⁰⁶ Notices of the Royal Astronomical Society, 449, 2421,
doi: 10.1051/0004-6361:20042386	907 doi: 10.1093/mnras/stv441
859 Meier, D. S., & Turner, J. L. 2005, The Astrophysical	908 Sormani, M. C., Treß, R. G., Ridley, M., et al. 2018,
360 Journal, 618, 259, doi: 10.1086/426499	Monthly Notices of the Royal Astronomical Society, 475,
861 Mills, E. A. C., Ginsburg, A., Immer, K., et al. 2018, The	910 2383, doi: 10.1093/mnras/stx3258
Astrophysical Journal, 868, 7,	911 Sormani, M. C., Treß, R. G., Glover, S. C. O., et al. 2019,
doi: 10.3847/1538-4357/aae581	⁹¹² Monthly Notices of the Royal Astronomical Society, 488,
⁸⁶⁴ Mizuno, D. R., Carey, S. J., Noriega-Crespo, A., et al. 2008,	913 4663, doi: 10.1093/mnras/stz2054
Publications of the Astronomical Society of the Pacific,	914 Stark, A. A., & Bania, T. M. 1986, The Astrophysical

866 120, 1028, doi: 10.1086/591809

⁹¹⁴ Stark, A. A., & Bania, T. M. 1986, The A
⁹¹⁵ Journal, 306, L17, doi: 10.1086/184695

- 916 Storey, P. J., & Hummer, D. G. 1995, Monthly Notices of
- ⁹¹⁷ the Royal Astronomical Society, 272, 41,
- 918 doi: 10.1093/mnras/272.1.41
- 919 Syed, J., Wang, Y., Beuther, H., et al. 2020, Astronomy &
- Astrophysics, 642, A68,
- 921 doi: 10.1051/0004-6361/202038449
- 922 Tak, F. F. S. v. d., Black, J. H., Schöier, F. L., Jansen,
- 923 D. J., & Dishoeck, E. F. v. 2007, Astronomy &
- 924 Astrophysics, 468, 627, doi: 10.1051/0004-6361:20066820
- 925 Tang, X. D., Henkel, C., Menten, K. M., et al. 2018,
- Astronomy & Astrophysics, 609, A16,
- 927 doi: 10.1051/0004-6361/201731849
- 928 The Astropy Collaboration, Price-Whelan, A. M., Lim,
- P. L., et al. 2022, The Astrophysical Journal, 935, 167,
 doi: 10.3847/1538-4357/ac7c74
- 931 The CASA Team, Bean, B., Bhatnagar, S., et al. 2022,
- 932 Publications of the Astronomical Society of the Pacific,
- 933 134, 114501, doi: 10.1088/1538-3873/ac9642
- 934 Tsuboi, M., Miyazaki, A., & Uehara, K. 2015, Publications
- of the Astronomical Society of Japan, 67, 90,
- 936 doi: 10.1093/pasj/psv058

- 937 Urquhart, J. S., Hoare, M. G., Purcell, C. R., et al. 2010,
- Publications of the Astronomical Society of Australia, 27,
 321, doi: 10.1071/AS10002
- 940 Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020,
- 941 Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2
- 942 Walsh, A. J., Breen, S. L., Britton, T., et al. 2011, Monthly
- ⁹⁴³ Notices of the Royal Astronomical Society, 416, 1764,
- 944 doi: 10.1111/j.1365-2966.2011.19115.x
- 945 Watson, C., Povich, M. S., Churchwell, E. B., et al. 2008,
- ⁹⁴⁶ The Astrophysical Journal, 681, 1341,
- 947 doi: 10.1086/588005
- 948 Wegg, C., Gerhard, O., & Portail, M. 2015, Monthly
- Notices of the Royal Astronomical Society, 450, 4050,
 doi: 10.1093/mnras/stv745
- 951 Wilson, T. L., & Rood, R. 1994, Annual Review of
- Astronomy and Astrophysics, 32, 191,
- 953 doi: 10.1146/annurev.aa.32.090194.001203