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Sumsary — The matrix formalisam for special relativity will be used to develop a Lorentz
invarieat system of mechunics applicable to nass points. The generalisetion
to rigid bodies, ana thae approach to 2 canunicel form will not be considered,
and e applications of aod expevimental verificetion of the resulits oblained
will only briefly be dealt with. Stress will be laid thoougbout on the
significance of 4evectors and their comnexion with the basie principle of
opecial Relativity.

In a previous artvicle ("Trensformation of Cow-ordinates in Special Relativity",
referred to hercufiter as (I)) it was saown that, with & homogeneous and isotropic
definition of inertial frames besed on huclidesn goometry, Hinstein's Prineiple of
Special Relativity leasds 10 & particular rule for ihe transformetion of space-time
co-ordinates between inertial frames. In a mathematical despace in which spaceetine
events are represeated by vectors with components (iot,x,y,3), the transformstion between
two frames in stancard configuration was shown to be realised in the 4 x 4 orthogonsl

matrix :
(L)=[ P «ivffe © ©
ivie B 0 ©
0 0 $ P
0 0 9 -3

which defines a yotation in ithe complex xe=t plane through & couplex "parametrice” angle
A satisfying A = aro tan(v/ic). (See (I), P.3)

It was also show: in (I), as a preliminary %o the derivetion of the matrix (L),
that the corvesponding eifferentials in two inertial framses S and 5' satisfy

ax® o dy® » 43 » e’ = ax'? ¢ 4y'? » 12*? - SPane?

We can tuerefore define & differential quontity 43> through

d3® = az° ¢ Ay + A2° - ooat°
g0 that ds> u ds'>, Tae differentisl ds is then said to be invariant under o Lorentz
transformation between reference frames, or mors simply, Lorents invariant. It is called
tae jntervel between two eventsd wiose specee-time ov-ordinates differ by tae differentials
dx,dysds,dt. The importance or sweh lLorents iavariant quantities to tie theory is
paramount, as reference % the basie principle of Speeial Relativity will show.

It is a conse ueuce of the Prineiple of Speciul Relativity as stated in (I)
that all irnertizl frames wre egquivalent for the formulation of paysical lews, by which we
mean that the lews of physics mast take the same form in wll such frames. Dut if the
transforuation of co~ordinates from freme to frame is accomplisned by the matrix (L), it
follows that tie laws of paysies must be cxpressible in terms wiich are invariant under
the trensformation (L). The sonstrucstion of Lorentsz invariant guentities as the sealars of
the theory is thercfors a primary task.

Suppose we define & vector gueaniity v in en inertial freme 8, zuch as we defined
the vector representing an event in (1), i.es v ie a vector with four components in the
matienatical 4-space in wuicn we are developing the theory. Suppose further that v*
represents tue same vector quamity referred to the co-ordinate system of a socond inertial
frame 8%, In general v' will be relsted %o v in an erbitrery manner, but for certain types
of vector, the law of transforuaiion between v and v' will be v* = zL)v, i.e. the same as
for the eventevectors X, A'. Aay vector v having this tr.msform.tion property will be
termed & 4=vector nenceforth, in keeping with conventional usage (periaps slightly
unfortunste as it leaves us no siuple name for vector quantities not transforming in this
way)e It will resdily be apparent that we should also seek to formulate physical laws in

terng of 4~vectors as well as invariants; suppose a physical idea was represented in a
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8 by the egquation v = 0, where v is a 4-vector, Then the Lorentz transformation of

is equation would yield (L)v = 0. If (L)v = v', we have v' = 0, so that the lew would
have the same form in any other inertial frame 5' in uhlch v' corresponded 10 v, i.es the

law would Lave Lie same form in all inertial frames, as the transformation betweon any one
frame and any other can be expressed in o mateix sucn s (L).

Clecrly, any eguation involving ouly 4evectors and Lorentsz invardsnts will
also preserve ivs fore under a Lorentz translérmation, Consider for example a possible
physicel law dv/ds = 0, where v is a 4-vector and ds is the invarient differential of
Page 1. Under a lorents trensformation, this law becomes d(L)v/ds® = dv'/ds® = 0. As ds =
ds', this law is of the same form in all inertial frases.

Our tesk is therefore tist of discovering lovertz ioverdants (scalars) end
devectors in terms of wiiah we may write the lawe of payalos in the same form for all
inertisl fraunes. (It muy be enguired at tais point wuether or not we should alse concern
ourselves with the next aigheet order in this hierarciicel scueme of gquantities, vize
sone sort of detenpors. The definition of guastities with a property of tonsor transformatio:
in lorents form is indecd poseible, but 15 not required for mecnenics, This topic will
accordingly be postponed uatil a later aréicle {(in preparation) on special relativistic
e}ectrodynanics).

I% will be convenient in future o denoite Lorents invariants and 4-vectors by
capital letters, e.ge 43, ¥, %o distinguish then from other quaniities.

Let us now atteupi to construct a devecior analogous to the velocity vector
of nonerelativisiic tacory. By couparison wita tae form dx/db of ordinary mechanics, we
uignt scek to deliue the veiooity us &i/de, where X is the colwan with terms iot, x, ¥, 8.
Puis vectow would tievefore have couponents ie, dx/db, dy/ds, da/dt. Inspection shows that
it is not & 4-vector however, for although X is o fourevector, dt is not an invariant
differential,; le.ce db suce not equal db' when we transform fron some S to some 5', Thus we
can see the diffioulty looming up that our nonerelativistic laws of mechanios may need to
be extensively re-cast, as tals vector walcs has failed Yo heve the Awvestor property
contains the Yordinary" velocity as three of its conponents. Ve must look for some
differential inveriant df, suslogous W 4%, w0 that we way define V = dX/d? as the 4-
velocity.
Consider the guantity uz. it may bo positive, zero, or negative, according %W
the reloticne obtuining between dx,6y,d8;d4%. If it is positive, dx,dy,ds,d% are such that
two eveals separeved by these differentiels connot pussibly be illuminsted by the same
flasi: of ligute Also, 28 d8 is an luveciant,; 45, there can be no frame in which dx, dy,
and dz are all zewo. Tuere is tuerefore an essentially spoce-like characier o the interval
dS when it is gresier than zero, mm»wumm:muedmm.
"space-like” interval. 1f on the otuer hand, is less than zero, there can be no franme
in wideh d% = U, and Gue inverval @5 ie cailed & "tlmeelike" intervel. To bring out thds

idea, let us write
' 682 . - ozua
thereby defining & differential df. As dS is an iaverient, and 50 is o (which should
strictly be writien ¢ in that case, bus it will be left as ¢ as the sole exception to
the capital rule), dT is an invariant. If @52 is negative, so that 4S5 is imageinayy, aré
i8s poeitive, so tnat 4F is real. Thus, for a tiue-lilke intexval 4T is o real quantity,
and hao & tize-like property in tils scuse, To show the siguifissace of 4T more clearly,
consider a perticle moving with veloeity v in an inertiel frame S. Then, for that particle,
vzﬁszckzoh2+ha
Thersiore we cun write &2 - sz + 8° - ezétz = (v2 - 02)6*:2
In the limit &x ==) dx, otos (v « 62)at® = = 0°47° therefore
dt = p.aT

mﬂawammwfmmmmamamtmmm&md
tae particle, corresponding to the time«differential dt in the orisinal frame 8. AT da



3

accordingly termed the differential of “pwoper time™. The likeliest candidate for the
role of d-velocity is taercfore ;

g

where X and df sre defined as above.

In exactly the sane way, we ocan see thet the accelerstion s defined in
ordinary mechenics does not transfors by tae Lorventz matrix, and is thereiore not a 4-
vegtor. e can however counstiuct a vector to be called the Ad-acceleration ag

A= %
cn exmgetly the sane argunent as sbove, i.c. that ¥V is o devector alveady, and thet 4T 4s
an invepient differvential.

Before embariting now on the mein tople of this discussion, it way be as well
to recapitulate on the nature of the probleam in hand.

i) Given the trensfomuetsicn mewrix (L) for co-ordinates betwcea any two
inertiei fromes xu 8 and 8%, we are scoking tw cash %he laws of mechanics in a form
t0 be unaltered oy this twransicraaticn.

ii) In order to 40 this we chall wake use of inverjént differentials and
devectors, as these are known to have the right transforaation properties.
iii) Ve aope W recover the familier laws of nonereletivistic mechanics iu the
linit if emall velocitiss.
iv) Tae ultimete test off the fora-disa is Yo be Lie success in predicuting the
results of experiment.

As a gulde to satisfying iii) zbove in the fian) result, we shall attempt to
neke the laws as formelly sicilar to those of nous-relutivisiie mechanics as possible.
The extent to walen formel similarity osn be achieved while maintaining overall lLorents
invariance camnot be aaticipated - it turns out ln fact that certain cspecis of the none
reletivistic theory are clesely parallcled in the zelativisiic foraz.

lonersiativictic nechanics acfines tae "force" actiug on a particle in terms
of the accelerstion evidenced by tie particle’'s motion. The derfinition is accoumplished
tarough the equaticn
f=nms

where & i8 tue seceleration and m is a deverminable conctant proper to the poarticle. The
saze approaca will be adopted here, so tiat we deline ihe 4e-fozrce tirough

F =L

where A is as avove, end M is a scalar. For M %o be chnrncterisiie of the particle and
in no way chsrscteristic of the frame of rolerence we must now assert thet ¥ is to be an
invariant. Tae preoise neture of E will becoune apperent laver, and its relation to the
nonerelativistio m aiso. For tho moment it is %0 be regarded «s an "sbav * averiant
somenow characteristic of the parsicis. Simdlardy, by =nelogy with nose-relativistio
mecnanice, we shall label tne 4evector P = UV as the "Jeuouentun” of tae particle.

fhe relatiousbip detwsen hese derizdiioss and the fawiliar quantities of
nonerelativistic mecheaics will now ¢ ccasideved. Consider firet she quuntity d¥/ds,
which, as wus resarked eariier, bears & simple relation (o thae "Jeveliooity?,

B8 L o b 2
Shus V = Pv in its second, tuird and fommth couponente.

It follovws from this that P = iV = vy, in its second, toird, wil fourth componenis.

low the non-relativistic "Jemomentun®, p, is mv, and as v «=) 0, f ==) 1, so
thet P -=) Mv, in its second, talrd, and fouwth couponents. We can therefore say that the
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mtnmmummdmmimummumnmuwmauu
at rest, M is toerefore called the "ppoper mass” or "restemass" of the particle. The
proper mass M is clearly to be identified with the "m-nhtivutw mass m wppropriate
40 ordinary mechenies, and we can then say that the second, third, and fourth coaponenis
of the d-monentum may de obtained from the ordinary J-velosity by multiplication, not by m,
a8 in ordinary mecnanles, bul by il = fm. Tais 13 equivelent to saying that the mass of 8
parcicle in relstivisiic mecnanics 1s & veloociiy-dependent quantity m(v) = fm(0), if one
iusists on using the nonerelativistic velocity 3-vector in one's definition of momenbum,
This has the resuli taat, for a porticle wita finive w(0), the mass will apparently
diverge to an iufiniie value as t.e pariicle is acceleraied W velocities near that of
light, for ithen P becoues very great. [hls is to sgy that it Lecomes progressively harder
10 accelerate & particle uniforaly a= its wveloclty approaches that of iigné, waieh is a
fact recognised in we behaviour of higoeencrgy particle accelerating machines. There is
tagrefors a correspondonce already vetween tue souewsat rorual deliaition of the 4e-monentum
and our paysical esperieace. Note howover taet in rolativity the "mass" is K, an invarians,
~and the § is takes up wilh a different deliaition of wae velooliy. It is because we luaist
on using the velocity es wessured in ithe lavoreiory frame that the apparent nass of a
particie is velocity-dependent.

_ Let us now exsudne the defiuition F = BA, Tils detinition can be regavded as
the "law of motion" of relativistiec mechanios, It will be of interest once again teo coupare
ite nsture witn that of tae correspording lew i noo-pelativistic wechanics.

ie nave F = S8 « $(@B) - pinadd

bow write F/P = £, wnieu is not a 4evector becouse £ is pot en invarient. For
the second, tuird, awd fourth components of the sbove egquatiorn we tuen have

f= %t'(ﬂlv)

which bears o striking reseablance to the norerelativistiec law, where the mass is again
taken a8 2 function of velovity m(v) = fM. With toie nodifieation, then, £ corresponds to
the nonerelativistic "force", We note then that nonereletivistic "3eforces®, s calculated
in one inertiel trame, will not be transformed inte their counterperte in another frame by
the Lorenis lransiormation anslogously to position co-ordiuates. Instead, the quantities
whioch are siven by p€ will trausform in tais way, as the components of the 4~vector F.
Tous the ides of foree intrinsic to Hewionien meechanics i3 modified in relativity. The
measure of & force within tae relativistic taecory is aifferent lor observers in different
inertial frames; in partiocular, if two foreces acting at different points sre considered
equal in one inerticl frame, they will not necesdsarily be considexcd s¢ in another frame.
Newton's Taird Law is preserved in faet only for two bodies in actual contacts

Tous far we have veen able o fiasd sirong similariiies Lelween nonerelabivistic
mechanios and the Lorentzetransforming equations wriviea in terms of 4devectors. The only
modification oi the nonereletivistie ideas 1o emerge %o far is ilhe apparent dependence of
mass on velocity, aund toe noneavsolule saiure of the moguilude of & force as defined by
m-rolaﬁviatic mechanics. Suppose now tiat we txy o form an expresuicn lor the work
in terus of 4-vectors. Analogfously o w = £.0x we tay ¥ = P.&K

ie@y ¥ = TOK = VAKK = h%‘f.&? {viere @ denotes the transpose of K)
s % 54T0) o0
lu?!‘-ﬁ&/ﬁﬂzu-c&a/&’g as SI8X = &zuoc&zfmthemmuenof&.
W= iﬁ.%&—(-o )olZ =2 0
Therefore tae work-scalar vanisnes identically in this representaticn, that is to say, the

4evectors P and 8K are orthogonal (if we "4epush" o particle, it "moves” in a "4edirection"
ortacgonal to the "push"). This strangeelooking resuli has a very interesting consequence.
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As ¥ is ortaogonal to &%, F/P nust also be ortiogonal %0 8K, for division by B cannot
destioy the orthogonality property in any inertisl frame, P merely being a number. Thus
r zemﬂct - onal vmr £ is orthogonal to &K. beié'h us deaote the four compouents of

e vector £ corsesponding o tue four couponents of &K {i0b%, &, &y, 82 .
then toe ortuogonality of £ and 8K can be written i e tt’fx'r"t'

fttioat + fx'& + fy.%’ L 4 fﬁ.& =0
Now the quantity fxoﬁx 4 fy.ﬁ' « £ 3.5‘ is wisl is mesnt in nonerelativistie mecaunics by

the work Ow.
e therefore nave that

To find ft’ we take the t=couporensy of £ = %‘-(ﬂtﬁ s dece t‘t = %{(&Mﬁﬁ%ﬁl} = 10‘&,;&1

Thus & = 026( fi) ou substitution for ft

But &w must equal OB, the olange in energy of the particle, sSo that we must now equate
the total encrgy E of o pawticle to

5= fé?\ioz
This is Binstein's fauous nass-ciergy ejuivalence, ane i%e sppearance in ibe present
formalive wust be regurded as strong evideuce for the appiicavility of the eguations. In
terms of Ji, we have

B = ilcz(l - vz/oz)'* e Ho® ¢+ &Mvz * Goae

The second term i3 the classiocal oxprecsion for the kinetic energy, and we see tast
relativity nes added to tais & "pest-ecucrgy™ Hﬁz' Aalel o particle is to possess by virtue
of its mass alone, and higher-opder teras in v&/ e®, The fora of tads eipression for the
totel energy of a particle is well borne out by wiorosocopie pihysics,

The final topic t0 be rafded ia this article is the extension of these ideas to
more than one particle, Tuis regquires o further postulale, nanely tiue conservation of total
denomentunm lu any interactions. For then, i toe sus of «ll individual P's is & constant,
in another frame, the sum of all the P' vectors is obtained by Lorentz-transforming the
sum of all the P vectors, each P transforning %o o P' by the oremvs transformation. Thus
if the suu of all the P vectors is constant in one frame, the sum of all the P' vectors
must be & constant in the other frame, Jor the Lorents tranaformation of a constent can
only give anctioer (though pgssioly different) constent. The compononts of P are, by
inspeetion, (icfll, fHdx/dt, Mdy/at, flda/ds), so that the postulote of conservation of
deoncntum inslics both the conservation of Jemouwentium and the conservation of mase,(waere
the velocity-dependent mas: iz to be used) in nonerclativisiio wsepasics. This postulate
then snables & conmpleie systen of dyneaics ©o be set up, including the efects of collisions.
This will not bLe undertaken here.

Our finel conclusion must therelore be that if we set oul %o write the laws of
mechanicsd iu teras of 4-vectors and lorents invarianis, in e ablenpt to saitisfy the
requiramcnt that they nave the sawe Josm in all inervisl frames, and furthermore make all
our definitions aund "laws" as siailar ia dediseusional Lora as possibie w the Newionimn
counterparivs, we do indeed acuieve en accepievlie systen of mecasnics capable of dealing
with aighevelocity particles as cbserved experimentally. The ract tist such ideas as the
apparent variation of uwacs with velooity, and the Hinstein masseencrgy wrelotionsnip couid
be obtained from such simple formal requirements must be wegerded ue convinoiug proof of
the suitability of the basic approach. For full discussion of the experimental appects, and
a possibly less formal method of attack, any standard text on relativity should be
consulted (for example, MOLLER, "The Theory of Relativity®, 0.U.P. 1952)
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