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EINSTEIN'S LAW OF GRAVITATION

Before tackling Einstein's new law, it is as well to convince
ourselves that Newton's law connot be guite right.

Newton said that between any two particles of matter there is
a force which is proportional to the pruoduct of their masses and
inversely proportional o the square of their distance. That is to say,
ignoring for the present the guestion of mass if there is a certain
attraction when the particles are a mile apart, there will be a quartes
of this attraction when they are two miles apart, a ninth when they are
three miles apart, and so on. The attraction diminishes much faster than
the distance increases. Now, of course, Newton, when he spoke zbout
distance, meant the distance at a given time: he thought there could be
no ambiguity about time. But we have seen that this was a mistake. What
one observer judges to be the same moment on the earth and the sun,
another will kudge to be two different moments. "Distance at a given
moment™ is therefore a subjective conception, which can hardly enter into
a cosmic law. Of course, we could make our law unambiguous by saying that
we are going to use times as they are estimated by Greenwich Observatory.
But we can hardly believe that the accidental circumstances of the Earth
are deserving to be taken so seriously, and the estimate of distance,
also, will vary for different observers. We cannot therefore allow that
Newton's form of the law of gravitation can be quite correct, since it
will give different results according to which of many equally legitimate
conventions we adopt. This is as absmrd as it would be if the question of
whether one man had murdered another were to depend on whether they were
described by their Christian names or their surnames. It is obvious that
physical laws must be the same whether distances are measured in miles or
in kilometres, and we are concerned with what is only an extension of the
same principle.

Our measurements are conventional to an even greater extent
than that which is admitted by the special theory of relativity. Moreover,
every measurement is a physical process carried out with physical material;
the result is bound to be an experimental datum, but may may not be
susceptible of the simple interpretation we normally assign to it. We are
therefore not going to assume to begin with that we know how to measure
anything. We assume that there is a certain physical quantity called
"interval", which is a relation between two events that are not widely
separated - but we do not know in advance how to measure it, beyond
taking for granted that it is given by some generalisation of the theorem
of Pythagoras. :

We do assume, however, that events have an ORDER, and that
this order is four-dimensional. We assume, that is Lo say, that we know
what we mean by saying that a certain event is nearer to another than a
third, so that before making accurate meassurements we can speak of the
"neighbourhood" of an event; and we assume that, in order to assign the
position of an event in space-time, four co-ordinates are necessary, but
we assume nothning about the way in which these co-ordinates are assigned,
except that neighbouring co-ordinaztes are assigned to neighbouring events.

They way in which these co-ordinates are to be assigned is
neither wholly arbitrary nor a result of careful measurement - it lies in
an intermediate region. While you are making zny continuous Journey, your
co-ordinates must not alter by sudden jumps. In America one finds that the
houses between l4th Street and 15th Street are likely to have numbers




between 1400 and 1500, while those between 15th Steeet and 16th Street have
numbers between 1500 and 1600, even if the 1400's were not used up. This
would not do for our purposes, because there is a sudden jump from one
block to the next. Or again, we might assign the time co-ordinate in the
following way: take the time that elapses between two successive births of
people called Smith; an event occurring between the birtihs of the 3000th
and 3001lst Smith known to history shall have a co-ordinate lying between
3000 and %001; the fractional part of its co-ordinate shall be the fraction
of a year that has eleapsed since the birth of the 3000th Smith. This way
of assigning time co-ordinates is perfectly definite, but is not admissible
for our purposes, because there will be sudden jumps between events just
before the birth of a Smith and events just after, so that in a continuous
journey your time co-ordinate will not change continuously. It is assumed
that, independently of measurement, we know what a continuous journey is,
and when your position in space-time chianges continuously, each of your
four co-ordinates must change continuously. One, two, or three of them may
not change at all; but whatever change does occur must be smooth, without
sudden Jjumps. This explains what is NOT zllowable in choosing co-ordinates.
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To explain all the changes that are legitimate in your
co-ordinates, suppose you take a large piece of soft india-rubber. While
it is in an unstretched condition, measure one-tenth inch squares on it.
Put in pins &t the corners of the squares. We can now take as co-ordinates
the number of pins passed in going to the right from a given pin to Jjust
below the pin in question, and ten the number of pins we pass on the way
up to this pin. In the figure, let O be the pin we start from, and P the
pin to waich we are going to assign co-ordinates. P is in the 5th column
and the third rowy s; its co-ordinates in the plane of the rubber are to
be 5 and 3.

Now take the rubber and stretch and twist it as much as you
like. Let the pins now be in the shape they have in the second figure:
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The divisions no longer represent distances according to our
usual notions, but they will still do just as well as co-ordinutes. We may
still take P as having co-ordinates 5 and 3 in the plane of the rubber, and
we may still regard the rubber as being in a plane, even though we have
twisted it out of whiat we should normally call a plane. Such CONTINUOUS
distortions do not matter.




' To take another illustration: instead of using a steel
measuring-rod to fix our co-ordinates, let us use a live eel, which is
wriggling all the time. The distance from the head to tail of the eel is
to count as 1 from the point of view of co-ordinates, whatever shape the
creature may be assuming at the moment. The eel is continuous, and its
wriggles are continuous, so it may be taken as our unit off distance in
meagsuring co=-ordinates. Beyond the requirement of continuity, the method
of assigning co-ordinates is purely conventional, and therefore a live
eel is just as good as a steel rod.

We are apt to think that, for really careful measurements
it is better to use a steel rod than a live eel. This is a mistake; not
because the eel tells us what the steel rod was thought to do, but
because the steel rod tells us no more than the eel obviously does. The
pdint is, not that eels are really rigid, but that steel rods really
wriggle. To uzn observer in just one possible state of motion, the eel
would appear rigid, while the steel rod would appear to wriggle just as the
eel does for us. For everybody moving differently from both this observer
and ourselves, both the eel and the steel rod would appear to wriggle, and
there is no saying that one observer is right and the others wrong. In
such matters, what is seen does not belong solely to the physical process
observed, bqt also to the standpoint of the observer. lieasurements of
distances and times do not directly revezl the things measured, but relations
of the things to the measurer. What observation can tell us about the
physical world is therefore more abstract than we have hitherto believed.

It is important to realise that geometry, as taught in schools
since Greek times, ceazses to exist as a separate science, and becomes merged
into physics. The two fundamental notions of elementary geometry were the
straight line and the circle. What appears to you as a straight road,
whose parts all exist now, may appear to znother observer as the flight of
a rocket, some kind of curve whose parts come into existence successively.
The circle depends on measurements of distances, since it consists of all
the points 4t a given distance from its centre, and measurement of
distances, as we have seen, is a subjective affair, depending on the way in
which the observer is moving. The failure of the circle to have objective
reality was demonstrated by the Michelson-Morley experiment, and is thus,
in o sense, the starting-point of the whole theory of relativity. Rigid
bodies, which we need for measurement, are only rigid for certain
observers; for others they will be obstinately changing their dimensions.
It is only our earth-bound imagination that makes us suppose & geometry
separate from physics to be imaginable.

That is why we do not trouble to give physical significance
to our co-ordinates from the start. Formerly, the co-ordinates used in
physics were supposed to be carefully measured distances; now we realise
that this care at the start is thrown away. It is at a later stage that
care is required. Our co-ordinates now are hardly more than o systematic
way of cataloguing events. Bul mathemstics provides, in the method of
tensors, such an immensely powerful technique that we can use co—oraingtes
assigned in this apparently careless way just as effectively as il we‘had
applied the whole apparatus of minutely accurate measurement in arriv1ng
at them. The advantage of being haphazard at the start is that we avoid
meking surreptitious physical assumptions, which we can hardly help.
making if we suppose that our co-ordinates have initially some particular
physical significance.

We need not try to proceed in ognorance of all observed



physical phenomena. We know certain things. We know that the old Newtonian
physics is very nearly accurate when our co-ordinates have been chosen in a
certain way. We know that the special theory of relativity is still more
nearly accurate for sultable co-ordinates. From such facts we can infer
certain things about our co-ordinates, which, im & logical deduction,
appear as postulates of the new theory.

As such postulates we take:

1. That the interval between neighbouring events takes a
general form, like that used by Riemaznn for distances.

2. That every body travels on a geodesic in space-time, except
in so far as non-gravitational forces act upon it.

3. That a light-ray travels on a geodesic which is such that
the interval between any two parts of it is zero.

Each of these postulates requires some explanation.

Our first postulate requircs that, if two events zre close
together, but not necessarily otherwise, there is an interval between them
which can be calculated from the differences between their co-ordinates.

We know, because Riemann's mathematics shows it to be so, that within any
amall region of space-time we can choose the co-ordinates so that the
interval has exactly the special form required in the special theory of re-
lativity. It is not necessary for the application of the special theory to
a limitedregion that there should be no gravitation in the region; it is
enough if the intensity of gravitation is practically the same throughout
the region. This enables us to apply the special theory within any small
region. How small it will have to be depends on the neighbourhood : on the
surface of the Earth, it would have to ve small enough for the curvature of
the Earth to be negligible. In the spaces between the planets, it need
only be sm 1l enough for the attraction of the sun und planets to be
sensibly constant throughout the region. In the spaces between the stars,
it might be enormous - say half the distance from one star to the next -
without introducing measurable inaccuracies.

Thus, at a great distance from gravitating matter, we can
choose our co-ordinates as to obtain a very nearly Euclidean space. This
is only really another way of saying that the special theory of relativity
applies. In the neighbourhood of matter, although we can make our space very
nearly Buclidean in a very small region, we cannot do so through any region
within which graviiation varies sensibly - at least, if we do, we shall have
to abandon the view exﬁressed in the second postulate, that bodies moving
under gravitational forces only move on geodesics.

We saw that a geodesic on a surface is the shortest line that
can be drawn from one point to another. For example, on the Earth, the
geodesics are Great Circles. When we come to space-time, the mathematics is
the same, but the verbal explanations have to be rather different. In the
general theory of relativity, it is only neighbouring events that have a
definite interval, independently of the route by which we travel from one
to another. The interval between distant events depends on tue route
pursued, =znd has to be calculzted by dividing up the route into & number
of elements and adding up the intervals for the elements. If the interval
is space~like, a body cannot travel from one event to the other; therefore
when we are considering the way bodies move, we are confined to time-like
intervals. The interval between two neighbouring events when it is time-like
will appear as the time between them for an observer who travels from one
event to the other, and so the whole interval between two events will be
judged by a person who travels from one to another to be what his clocks show
to be the time that he has taken on the journey. For some routes this time




will be longer, for others shorter. The more slowly the man travels, the
longer he will think he has been on the journey. This must not be taken as
a platitude. I zm not saying that if you travel from London to Edinburgh
you will take longer @f you travel more slowly - I am saying something much
more odd. I am saying that if you leave lLondon at 10 a.m. and arrive in
Edinburgh at 6.30 p.m. Greenwich Time, the more slowly you travel the
longer you will take - if the time is judged by your watch. This is a very
different statement. From the point of view of a person on the Earth, the
journey takes eight hours and a half, but if you had been a ray of light
travelling round the solar system, starting from London at 10 a.m., and
reflected from Jupiter and Saturn, and so on, until at last you were
reflected back to Edinburgh and arrived there at exactly 6.30 pem., you
would judge that the journey had taken you exactly no time. And if you had
gone by any circuitous route, which enabled you to arrive on time by
travelling fast, the longer your route the less time you would judge that
you had taken; the diminution of time would be continual as you approached
the speed of light. Now I say that when a body travels, if it is left to
itself, it chooses the route which makes the time between two stages of
the journey as long as possible; if it had travelled from one event to
another by any other route, the time, as measured by its own clocks, would
have been shorter. This is a way of saying that bodies left to themselves
do their journeys as slowly as they can; it is a sort of cosmic laziness.
Its mathematical expression is that they travel on geodesies, in which the
total interval between any two events on the journey is GREATER than by any
alternative route. (The fact that it is greater, not less, is due to the
fact that the sort of interval we are considering is more analagous to time
than to distance.) For example, if a person could leave the Earth and
tr.vel zbout for a time and then return, the time between his departure
and return would be less by his clocks than by those on the Earth; the
Barth, on its journey round the Sun, chooses the route which makes the
tiue of any bit of its course by its clocks longer than the time as judged
by clocks which move by a different route. This is what is me:nt by saying
that bodies left to themselves move in geodesics in space-time.

It is important to rememver that space-time is not supposed
to be Euclidean. As far as the geodesics are concerned, this has the effect
that space-time is like a hilly countryside. In the neighbourhood of a
piece of matter, there is, as it were, a hill in space-time; this hill
grows steeper and steeper as it gets to the top, like the neck of a
champagne bottle. It ends in a sheer precipice. Now by the law of cosmic
laziness which we mentioned earlier, a body coming into the neighboorhood
of the hill will not attempt to go straight over the top, but will go
round. This is the essence of Einstein's law of gravitation. What & body
does, it does BECAUSE OF THE NATURE OF SPACE-TINE IN ITS OWN NEIGHBOURHOOD,
not beeause of some mysterious force emanating from a distant body.

An analogy will serve to make the point clear. Suppose that
on a dark night a number of men with lanterns were walking in various
directions across a huge plain, and suppose that in one part of the plain
there was a hill with a flaring beacon on the top. Our hill is to be such
as I have described, growing steeper as it goes up and ending in‘g )
precipice. I shall suppose that there are villages dotted about the plain
.nd the men with lanterns are walking to and from the various villageg.
Paths have been made showing the easiest way from one village to another.
These paths will all be more or less curved., to avoid going too far up
the hill; they will be more sharply curved when they pass near the top of
the hill than when they keep some way off it. Now supposing that you are
observing all this as best you can, from a place high up in a balloon, S0




that you cannot see the ground, but only the lanterns and the beacon. You
will not know that there is a hill, or that the beacon is at the top of it.
You will see that people turn out of their straight course when they approach
the beacon, and that the nearer they come the more they turn aside. You will
naturally attribute this to an effect of the beacon; you may think that it
is very hot and the people are afraid of getting burnt. But if you wait for
daylight and see the hill, you will find that the beacon merely marks the
top of the hill and does not influence the people with lanterns in any way.
Now in this aznalogy the beacon corresponds to the sun, the
people with lanterns to the planets and comets, the paths correspond to
their orbits, and the coming of daylight corresponds to the coming of
Einstein. Einstein says that the sun is at the top of a hill, only the hill
is in space-time, not in space. Each body, at each moment, adopts the
easiest course open to it, bubt owing to the hill the easiest course is not
a straight line. Each particle of matter is at the top of its own hill.
What we call a large piece of matter is a piece which is at the top of a
large hill - the hill is what we know about, the bit of matter is assumed
for convenience. Perhaps there is really no need to assume it, =nd we
could do with the hill alone, for we can never get to the top of anyone
else's hill, any more than the pugnacious cock can fight the peculiarly
irritating bird that he sees in the looking=-glass.

I have given only a gualitative description of Einstein's
law of gruvitation; to give its exact mathematical formulation is impossible
without more mathematics than I am permitting myself. The most interesting
point is that it maukes the law no longer a result of action at a distance;
the sun exerts no force on the planets whatsoever. Just as geometry has
become physics, so, in a sense, has physics become geometry. The law of
gravitation has become the geometrical law that every body pursues the
easiest course from place to place, but this course is affected by the hills
and valleys that are encountered on the road.

We have been assuming that the body is acted upon only by
gravitational forces. We are concerned at present with the law of gravitation,
not with the effects of electromagnetic forces or the forces between sub-atomic
particles. There have been many attempts to bring all these forces into the
framework of general relativity, by Einstein himself, and by Weyl, Kaluza,
and Klein, to mention only = few of the others, but none of these attempts
has been entirely satisfactory. For the present, we may ignore this work,
because the planets are not subject, as wholes, to appreciable electromagnetic
or sub-atomic forces; it is only gravitation that has to be considered in
accounting for their motions, with which we are concerned in this chapter.

Our third postulate, that a light-ray travels so that the
interval between two parts of it is zero, has the advantage that it does not
have to be stated only for small distances. If each little bit of interval
is zero, then the sum|of all of them is zero, and so even distant parts of
the same light-ray have zero interval.The course of a light-ray is also a
geodesic according to this postulate. Thus we now have two empirical ways
of discovering what are geodesics in space-time, namely light-rays and
bodies moving freely. Among freely-moving bodies are included all which are
not subject as wholes to appreciable electromagnetic or sub-atomic forces,
that is to say, the sun, stars, planets and satellites, and zalso falling
bodies on the earth, at least when they are falling in a vacuum. When you are
standing on the Earth, you are subject to electromagnetic forces. The electrons
and protons in the neighbourhood of your feet exert a repulsion on your feet
which is just enough 1o overcome the force of gravitation. This is what
prevents you from falling through the earth, which is mostly empty space.




PROOFS OF EINSTEIN'S LAW

Tke reasons for accepting Einstein's law of gravitation
are partly empirical, partly logical. We will begin with the
former.

Einstein's law of gravitation gives very nearly the same
results as Newton's, when applied to calculation of the orbits of the
planets and their satellites. If it did not, it would not be true,
since the conseguences deduced from Newton's law have been found to be
almost exactly verified by observation. When, in 1915, Einstein first
published the law, there was only one empikical fact to which he could
point to show that his theory was better than Newton's. This was what
is called the motion of the perihelion of Mercury.

The planet liercury, like the other planets, moves round the
sun in =n ellipse, with the sun in one of the foci. At some points of
its orbit it is nearer the sun than at some other points. The point
where it is nearest the Sun is called the "perihelion”. Now it was
found by observation that, from one occasion when lMercury is nearest the
sun until the next, liercury does not go exactly once round the sun, but
a little bit more. The discrepancy is very small: it does not amount to
more than an angle of forty-two seconds in a century. Since Mercury
goes round the sun rather more than four hundred times a century, it
must move about one-tenth of a second of angle from one perihelion to
the next. This very minute discrepancy from Newbon had puzzled
astronomers. There was a calculated effect due to perturbations caused
by other planets, but this small discrepancy was the residue affer
allowing for these perturbations. Einstein's theory accounted exactly
for this residue. There is a similar effect for the other planets, but
it is much smaller and more difficult to observe. Since Einstein
published his new law, the effect has been observed for the earth, and
with a fair degree of certainty for Mars. This perihelion effect was,
at first, Einstein's only empirical advantage over Newton.

His second success was more sensational. According to
orthodox opinion, light in a vacuum ought always to travel in straight
lines. Not being composed of material particles, it ought to be
unaffected by gravitation. However, it was possible without any
serious breach with old ideas to admit that, in passing near the sun,
light might be deflected out of the straight path as much as if it were
composed of material particles. Einstein, however, maintained, as a
deduction from his law of gravitation, that light should be deflected
twice as much as this. That is to say, if the light of a star passed very
near the sun, Einstein maintained that the ray from the star would be
turned through an angle of just under 1% sec. His opponents were willing
to concede half this amount. Now it is not every day that a star just
in line with the sun can be seen. This is only possible during a total
eclipse, and not always then, because there may not be any bright stars
in just the right position. Eddington points out that, from this point
of view, the best day of the year is May 29, because then there are a
number of bright stars close to the sun. It happened by incredibly good
fortune that there was a total eclipse of the sun on May 29, 1919. Two
British expeditions photographed the stars near the sun during the
eclipse, and the results confirmed Einstein's prediction. Some astron-
omers who remained doubtful whether sufficient precautions had been
taken to ensure accuracy were convinced when their own observations of

a subsequent eclipse gave exactly the same result.




Results of observations at subsequent eclipses have again
confirmed Einstein's estimate, which is therefore now almost universally
accepted.

The third experimental test iB on the whole favourable to
Einstein, but the quantities concerned are so small that it is only just
possible to measure them, and the result is therefore not decisive.
Einstein deduces from his law of gravitation that any periodic process
which takes place in an atom in the sun (whose gravitation is very
intense) must, as measured by our clocks, take place at a slightly slower
rate than it would in a similar atom on the earth. The "interval®
involved will be the same in the sun and on the earth, but the same
interval in different regions does not correspond to exactly the same ¢
time. This is due to the "hilly" character of space-time which constitutes
gravitation. Conseguently, any given line in the spectrum ought, when the
light comes from the sun, to seem to us a little nearer the red end of
the spectrum than if the light came from a source on the earth. The effect
is expected to be very small - so small that there is still uncertainty
as to whether it exists or not. Einstein's theory predicts a similar
effect for every star, but the technical difficulties of measuring it are
so great that after forty years of observations we cannot be sure that ‘
it exists.

No other measurable differences between the consequences
of Einstein's law and those of Newton's have hitherto been discovered,
at least so far as the solar system is concerned, but the above experi-
mental tests are quite sufficient to convince astronomers that, where
Newton znd Einstein differ as to the motions of the heavenly bodies, it
is Einstein's law that gives the right results. Even if the empirical
grounds for Einstein's law stood alone, they would be conclusive.

Whether his law represents the exact truth or not, it is certainly more
nearly exact than Newton's, though the inaccuracies in Newton's were all
exceedingly minute.

But the considerations which originakly led Einstein to
his law were not of this detailed kind. Even the conse juence about the
perihelion of Mercury, which could be verified at once from previous
observations, could only be deduced after the theory was complete, and
could not form any part of the original grounds for inventing such a
theory. These grounds were of a more abstract logical character. I do
not mean that they were not based upon observed facts, and I do not mean
that they were a priori fantasies such as philosophers indulged in ‘
previously. What I mean is that they were derived from certain general
characteristics of physical experience, which showed that Newton MUST be
wrong and that something like Einstein's MUST be right.

The arguments in favour of the relativity of motion are
quite conclusive. In daily life, when we say that something moves, we
mean that it moves relative to the earth. In deal.ings with the motions
of the planets, we consider them as moving relative to the sun, or to the
centre of mass of the solar system. When we say that the solar system
itself is moving, we mean that it is moving relative to the stars. There
is no physical occurence which can be called 'absolute motion'j;
consequently, the laws of physics must be concerned with relative motions,
since these are the only kind which occur.

We now take the relativity of motion in conjuhction with
the experimental fact that the velocity of light is the same relatively
to one body as relatively to another, however the two may be moving.

This lezds us to the relativity of distances and times. This in turn shows



that there is no objective physical fact which can be called "the
distance between two bodies at a given time", since both the time and
the distance will depend on the observer. Therefore Newton's law of
gravitation is logically untenable, as it makes use of "distance at a
given time",

This shows that we cannot rest content with Newton, but it
does not show us what we are to put in his place. Here several considerations
enter in. We have in the first place what is called the equality of
gravitational and inertial mass. What this means is as follows: when you
apply a given force (Although force is no longer one of the fundamental
concepts of dynamics, it may still be employed as a convenient way of
speaking, like M'sunrise" and "sunset") to a heavy body, you do not give it
as much acceleration as you do a light body. What is called the "inertial"
mass %of a body is meusured by the amount of force required to produce a
given acceleration. At a given point of the Earth's surface, the "mass" is
proportional tol the "weight". What is measured by scales is rather the mass
than the weight: the weight is defined am the force with which the earth
attracts the body. Nowthis force is greater at the poles than at the
equator, because at the equator the Earth produces a "centrifugal force"
which partly counteracts gravitation. The force of the earth's attraction
is also greater on the surface of the earth than it is at a great height
or at the bottom of a very deep mine. None of these variations are shown
by scales, because they affect the wiights used just as much as the body
weighed; but they are shown if we use a spring balance. The mass does not
vary in the course of these changes of weight.

The "gravitational™ mass is differently defined. It is
capable of two meanings. We may mean (1) the way a body responds in a
situation where the gravtiational field has a known intensity, for exumple,
on the surfece of the earth, or on the surface of the sun; or (2), the
intensity of the gravitational force produced by the body, as, for example,
the sun produces stronger gravitational forces than the earth does. Newton
says that the force of gravitation between two bodies is the product of
their masses. Now let us consider the atiraction of different bodies to one
and the same body, say, the sun. Then different bodies are attracted by
forces which are proportional to their masses, and therefore produce
exactly the same acceleration in all of them. Thus, if we mean gravitational
mass in sense (1), that is to say, theway a body responds vo gravitationm,
we find that "the ejquality of gravitational and inertial mass" reduces to
this: in a given gravitational situation, all bodies behave exactly alike.
As regards the surface of the earth, this was one of uhe first discoveries
of Galileo. Aristotle thought that heavy bodies fall faster than lighter
ones; Galileo showed that this is not the case, when the resistance of air
is eliminated. In z vacuum, a feather falls as fast as a lump of lead. As
regards the planets, Newton established the corresponding facts. At a given
distance from the sun, a comet, which has a very small mass, experiences
exzctly the same acceleration towards the sun as a planet experiences at
the same distance. Thus the way in which gravitation affects a body depends
only upon where the body is, and is in no degree dependent upon the nature
of the body. This suggests that the gravitational effect is a characteristic
of the locality, which is what Einstein makes it.

As for the gravitational mass in sense (2), i.e. the insensity
of the force produced by a body, this is no longer EXACTLY proportional to
its inertial mass. The question involves some rather complicated
mathematics and I shull not go into it.
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We have another indidcation as to what sort of thing the law
of gravitatio MUST be, if it is to be a characteristic of a neighbourhood,
a8 we have reason to suppose it is. It must beexpressed in some law which
is unchanged when we adopt a different system of co-ordinates. We saw that
we must not, to begin with, regard our co-ordinatesas having any physical
significance: they are merely systematic ways of naming different parts of
space-time. Being conventional, they cannot enter into physical laws. That
means to say that, if we have expressed a law correctly in terms of one set
of co-ordinates, it must be expressed by the same formula in terms of another
set of co-ordinates. Or, more exactly, iL must be possible to find a formula
which expresses the law, and which is unchanged by change of co-ordinates.
It is the business of the theory of tensors to deal with these formulae, and
the theory of tensors shows that there os one formula which obviously
suggests itself as being possibly the law of gravitation. When this  #
possibility @s examined, it is found to give the right results; it is here
that the empirical confirmations come in. But if Einstein's law had not been
found to agree with experience, we could not have gone back to Newton's law.
We should have been compelled by logic to seek some new law expressed in
terms of tensors, and therefore independent of our choice of co-ordinates.
It is impossible without mathematics to explain the theory of tensors; the .
non-mathematicianimust be content to know that it is the technical method
by which we éliminate the conventional element from our measurements and
laws, and thus arrive at the physical laws which are independent of the
observer's point of view. Of this method, Einstein's law of gravitation is
the most splendid example.




