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� PURPOSE �

� Purpose

The �dirty image formed directly by Fourier transforming visibility data from practical interfero�
metric arrays has defects imposed by limited sampling of the u�v plane�

This tutorial describes how such visibility data can be processed to reduce these defects using
deconvolution algorithms� It is based on lectures originally given in the NRAO Summer Schools on
Synthesis Imaging�

� Introduction

An interferometric array samples the complex visibility function V �u� v� of the sky at points in
the u�v plane� Under approximations that are valid for a su�ciently small sources in an otherwise
empty sky� the visibility function V �u� v� is related to the angular distribution of the source intensity
I�l�m� �multiplied by the primary beam of the array elements� through a two�dimensional Fourier
transform�

V �u� v� �

Z Z
S

I�l�m�e���i�ul�vm� dl dm � ���

where S denotes integration over the whole sky�

Practical arrays provide only a �nite number of noisy samples of the visibility function V �u� v�� so
I�l�m� cannot be recovered directly� Instead� I�l�m� must be estimated either from a model with a
�nite number of parameters� or from a non�parametric approach�

For radio astronomical imaging� a convenient �and sometimes realistic� model of the source intensity
is a ��d grid of ��functions whose strengths are proportional to the intensity� The model can be
thought of as a �bed of nails with strengths bI�p�l� q�m�� where �l and �m are the element

separations on a grid in two orthogonal sky coordinates� The visibility bV predicted by this model is
given by

bV �u� v� � NlX
p��

NmX
q��

bI�p�l� q�m�e���i�pu�l�qu�m� � ���

For simplicity we notate the discrete model bI�p�l� q�m� as bIp�q � Assuming reasonably uniform
sampling of a region of the u�v plane� one can expect to estimate source features with widths ranging
from O���max�u� v�� up to O���min�u� v��� The grid spacings� �l and �m� and the number of
pixels on each axis� Nl and Nm� must be chosen so that all these scales can be represented� In terms
of the range of u�v points sampled� the requirements are�

�� �l � �
�umax

�

�� �m � �
�vmax

�

�� Nl�l �
�

umin
� and
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�� Nm�m � �
vmin
�

The model has NlNm free parameters� the �ux densities bIp�q in each cell� The measurements
constrain the model such that at the sampled u�v points

V �ur � vr� � bV �ur � vr� � ��ur� vr� � ���

where ��ur� vr� is a complex� normally�distributed random error due to receiver noise� and r indexes
the samples�

At points in the u�v plane where no sample was taken� the transform of the model can have any
value without con�icting with the data� One can think of Equation � as a multiplicative relation

V �u� v� � W �u� v�
�bV �u� v� � ��u� v�

�
� ���

where W �u� v� is a weighted sampling function which is non�zero only where we have samples in the
u�v plane�

W �u� v� �
X
r

Wr��u� ur� v � vr� � �	�

By the convolution theorem� this corresponds to a convolution relation in the image plane�

IDp�q �
X
p� �q�

Bp�p��q�q�
bIp��q� �Ep�q � �
�

where
IDp�q �

X
r

W �ur � vr�Re
�
V �ur� vr�e

��i�pur�l�qvr�m�
�

���

and
Bp�q �

X
r

W �ur� vr�Re
�
e��i�pur�l�qvr�m�

�
� ���

Ep�q in Equation 
 is the noise image obtained by replacing V in Equation � by ��ur� vr�� Note
that the Bp�q given by Equation � is the point spread function �beam� that is synthesized after all
weighting has been applied �and after gridding and grid correction if an FFT was used� to keep
the notation concise� the gridding and grid correction are not explicitly included�� The Hermitian
nature of the visibility has been used in this rearrangement�

Equation 
 represents the constraint that the model bIp�q � when convolved with the point spread
functionBp�q �also known as the dirty beam� corresponding to the sampled and weighted u�v coverage�
should yield IDp�q �known as the dirty image��

The weight functionW �u� v� can be chosen to favor certain aspects of the data� For example� setting
W �ur� vr� to the reciprocal of the variance of the error in V �ur� vr� optimizes the signal�to�noise ratio
in the �nal image� Setting W �ur� vr� to the reciprocal of some approximation of the local density of
samples minimizes the sidelobe level�

� Solutions of the convolution equation

We now consider whether the convolution equation has a unique solution�
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��� The �principal solution� and �invisible distributions�

Consider a situation in which some spatial frequencies that are present in the source model are not
sampled by the data� The �t of the model to the data is una�ected by changing the amplitudes of
the sinusoids corresponding to these frequencies�

The dirty beam �lters out these un�sampled spatial frequencies� if Z is an intensity distribution
containing only such frequencies� then B�Z � �� Thus� if I is a solution of the convolution equation�
then so is I � �Z where � is any number� As usual� the existence of homogeneous solutions implies
the non�uniqueness of any solution� in the absence of boundary conditions�

In interferometry� the solution in which all the un�sampled spatial frequencies have zero amplitude
is called the �principal� solution� It is useful to think of the homogeneous solutions� or �invisible
distributions� �Bracewell � Roberts ��	��� as originating via two main shortcomings of our u�v
coverage�

�� the coverage extends only out to a �nite spatial�frequency limit� and

�� there are holes in the coverage�

Invisible distributions of the �rst sort correspond to �ner detail than can be resolved� We deal with
these by accepting a �nite�resolution image as our �nal product� The most vexing problems of image
construction come from �nding plausible invisible distributions of the second sort to merge with the
principal solution� To see why we need to do this� consider the shortcomings of the principal solution�

��� Problems with the principal solution

If the visibility data V �u� v� are obtained on a regular grid� then the principal solution can easily be
computed� one simply chooses the weight function W in Equation � to correct the bias in weight
due to any vagaries of sampling� For each grid point� the visibility samples are summed with the
appropriate weights� and the total weight is normalized to unity� Using such uniform weighting� the
principal solution is the same as the dirty image� the convolution of the true brightness distribution
with the dirty beam�

For most synthesis arrays now used in radio astronomy� the dirty beam has sidelobes in the range
� to �� � Sidelobes represent unavoidable ambiguity about the true distribution of emission in
the dirty image� There are two ways to resolve this ambiguity�

�� make further observations to improve the sampling�

�� incorporate a priori information� e�g� about the extent of the emission on the sky� about
positivity where appropriate� or about an upper bound to the degree of polarization� etc�

For example� consider uniformly weighted observations of a point source� the dirty image is the dirty
beam centered on the point source position� Without a priori information we cannot distinguish
whether the source is truly a point� or is shaped like the dirty beam� Of course we know that the
Stokes parameter I must be positive� and that most radio sources are much better localized than dirty
beams �they certainly do not have sidelobe patterns extending to in�nity�� A further unsatisfactory
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aspect of the principal solution� besides its implausibility� is that it changes �sometimes drastically�
as more visibility data are added� A more stable estimator is obviously desirable�

The key to �successful� deconvolution is to make good use of such a priori information as positivity
and the extent �support� of the radio source to steer the choice of invisible distributions to add
while constructing the image� This process can also be thought of as specifying plausible boundary
conditions while solving the deconvolution equation�

Image deconvolution in radio astronomy has so far been dominated by two algorithms� �CLEAN
and the Maximum Entropy Method �MEM�� which solve the convolution equation by placing strik�
ingly di�erent constraints on the invisible distributions� This tutorial focuses on these dominant
approaches� and on a third that has recently shown particular promise for VLBI imaging� direct
algebraic solution of the convolution equation�

� The �CLEAN� algorithm

The �CLEAN algorithm� introduced by H�ogbom ������� assumes that the radio sky can be repre�
sented by a small number of point sources in an otherwise empty �eld of view� It uses a simple
iterative procedure to �nd the positions and strengths of these sources� The �nal deconvolved
�CLEAN image is the sum of�

�� these point�source �CLEAN components reconvolved ��restored�� with a �CLEAN beam �usu�
ally Gaussian� to de�emphasize the higher spatial frequencies which are often spuriously ex�
trapolated and�

�� �optionally� but strongly recommended� an image representing residual di�erences between the
point�source model and the data�

We now describe some variants of the �CLEAN algorithm� including two that can be used on large
images�

��� The H�ogbom algorithm

This algorithm proceeds as follows�

�� Find the strength and position of the peak �i�e�� of the greatest absolute intensity� in the dirty
image IDp�q�

�� Subtract from the dirty image� at the position of the peak� the dirty beam B multiplied by
the peak strength and a damping factor � �� �� usually termed the loop gain��

�� Go to ��� unless any remaining peak is below some user�speci�ed level� The search for peaks
may be constrained to speci�ed areas of the image� called �CLEAN� windows�

�� Convolve the accumulated point source model bIp�q with an idealized �CLEAN beam �usually
an elliptical Gaussian �tted to the central lobe of the dirty beam��

	� Add the residuals of the dirty image to the �CLEAN image�
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The �fth step is sometimes omitted� but it is recommended because it can provide useful diagnostic
information about the noise on the image� residual sidelobes� �bowls� near the image center �see
Section ��� below��

��� The Clark algorithm

Much of the computation in �CLEAN consists of shifting and scaling the dirty beam� As this is
essentially a convolution it may� in some circumstances� be done more e�ciently with ��d FFTs�
Clarks ������ �CLEAN algorithm does this� �nding approximate positions and strengths of the
point components using only a small patch of the dirty beam�

In detail� the Clark algorithm has two cycles� known as �minor� and �major� cycles� The minor

cycle proceeds as follows�

�� A beam patch �a segment of the discrete representation of the beam� is selected to include the
highest exterior sidelobe�

�� Points are selected from the dirty image if they have an intensity� as a fraction of the image
peak� greater than the highest exterior sidelobe of the beam�

�� A H�ogbom �CLEAN is performed using the beam patch and the selected points of the dirty
image� The stopping criterion for the �CLEAN is roughly such that any remaining points
would not be selected in step ����

The algorithm then does a major cycle wherein the point source model found by the minor cycle
is transformed via an FFT� multiplied by the weighted sampling function �inverse transform of the
beam�� transformed back� and subtracted from the dirty image� Errors introduced in a minor cycle
by the beam patch approximation are� to some extent� corrected in subsequent minor cycles�

��� The Cotton	Schwab algorithm

Cotton � Schwab �Schwab ����b� top right corner of p� ����!� developed a variant of the Clark
algorithm whereby the major cycle subtracts �CLEAN components from the un�gridded visibility
data� Aliasing noise and gridding errors can thus be removed if the inverse Fourier transform of the
�CLEAN components to each u�v sample is accurate enough� Two routes are used for the inverse
transform�

�� for small numbers of �CLEAN components� a �direct Fourier transform is performed so the
accuracy is limited by the precision of the arithmetic�

�� for a large number of �CLEAN components� an FFT is used for e�ciency� but inevitably some
errors are introduced in interpolating from the grid to each u�v sample� High order Lagrangian
interpolation is generally used�

A further advantage of the Cotton�Schwab algorithm� besides gridding correction� is its ability to
image and �CLEAN many separate but proximate �elds simultaneously� In the minor cycle each
�eld is �CLEANed independently� in the major cycles� �CLEAN components from all �elds are
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removed together� In calculating the residual image for each �eld� the full phase equation� including
the w�term� can be used� Thus� the algorithm can correct images for the �non�coplanar baselines�
distortion�

The Cotton�Schwab algorithm is often faster than the Clark �CLEAN� the major exception being for
data sets with a large number of visibility samples� where re�gridding many times can be prohibitively
expensive� The Cotton�Schwab algorithm also allows �CLEANing with smaller guard bands around
the region of interest� hence with smaller image sizes�

The algorithm has been particularly useful for �CLEANing sensitive� high�resolution images at lower
radio frequencies where there may be numerous confusing sources in the primary beam� In such
work� imaging a wide �eld of view to deconvolve the sidelobes of distant confusing sources in a
H�ogbom or Clark �CLEAN could be prohibitively expensive in disk space and time� The confusing
sources �once identi�ed from a diagnostic low�resolution image� can however be handled in small
sub��elds using the Cotton�Schwab approach�

The Cotton�Schwab algorithmwas �rst implemented in the NRAOs Astronomical Image Processing
System �classic AIPS� as the program �MX and is now the basis of the AIPS programs �IMAGR
and �WFCLN�

��� Other algorithms related to 
CLEAN�

Several later algorithms have tried to correct de�ciencies of �CLEAN�

Steer� Dewdney � Ito ������ developed a variant of the Clark algorithm in which the minor cycle
is replaced by simply taking all points above a sidelobe�dependent threshold� scaling them and then
subtracting normally in the major cycle� This saves time compared to �CLEAN� but the radio
astronomy community has little experience with this variant of the algorithm� The algorithms
ability to handle di�erent practical situations is therefore somewhat uncertain� It was implemented
in classic AIPS as SDCLN�

Segalovitz � Frieden ������ proposed an ad hoc modi�cation of the dirty beam to enhance the
smoothness of the resulting �CLEAN image� Cornwell ������ justi�ed a similar prescription as
forcing the minimization of the image power �i�e�� the sum of the squares of the pixel values� and
thus pushing down the extrapolated visibility function� Both approaches seem to ameliorate the
striping instability �see Section ���� below� to which �CLEAN is susceptible�

��� Practical details and problems of 
CLEAN�

Theoretical understanding of �CLEAN is relatively poor even though the original algorithm is quite
old� Schwarz ������ ����� analyzed the H�ogbom �CLEAN algorithm in detail� He notes that in
the noise�free case the least�squares minimization of the di�erence between observed and model
visibility� which �CLEAN performs� produces a unique answer if the number of cells in the model
is not greater than the number of independent visibility measurements contributing to the dirty
image and beam �cf� Equations � and ��� counting real and imaginary parts separately� This rule is
una�ected by the distribution of u�v data so that� in principle� super�resolution is possible if enough
visibility samples are available� In practice� however� the presence of noise and the use of the FFT
algorithm to calculate the dirty image and beam corrupt our knowledge of the derivatives of the
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visibility function upon which super�resolution is based� Clearly� even if the FFT is not used� the
presence of noise means that independence of the data must be rede�ned� Schwarz produced a noise
analysis of the least�squares approach but it involves the inversion of a matrix of side NlNm and
so is impractical for large images� furthermore� we are really interested in �CLEAN� not the more
limited least�squares method� since �CLEAN will still produce a unique answer in circumstances
where the least�squares method is guaranteed to fail� To date no one has succeeded in producing a
noise analysis of �CLEAN itself� The existence of instabilities �see Section ���� below� in �CLEAN
makes such an analysis highly desirable�

Schwarz also proves three conditions for the convergence of �CLEAN�

�� The beam must be symmetric�

�� The beam must be positive de�nite or positive semi�de�nite� Thus the eigenvalues must be
non�negative�

�� The dirty image must be in the range of the dirty beam� Roughly speaking� there must be no
spatial frequencies present in the dirty image which are not also present in the dirty beam�

All three conditions are obeyed in principle for the dirty image and beam calculated by Equations �
and � if the weight function W is nowhere negative� In practice� however� numerical errors� and
the gridding and grid�correction process may create violations of these conditions� so �CLEAN
will eventually diverge� �CLEANing close to the edge of a dirty image computed by an FFT is
particularly risky�

Most of our understanding of �CLEAN comes from a combination of guessing how to apply intuition
and Schwarzs analysis to real cases� and much practical experience with real and test data� We will
now try to summarize the available lore about how �CLEAN should be used� and how it can fail�

�� The use of boxes� �nite support

The region of the image which is searched for the peak can be limited to those areas �known as the
�CLEAN windows or boxes� within which emission is presumed to be present� These boxes restrict
the number of degrees of freedom available when �tting the data� Schwarzs work �and common
sense� tells us that the number of such degrees of freedom should be minimized but that the �CLEAN
window should include all real emission� For a simple source in an otherwise uncluttered �eld of
view� one �CLEAN window will do� but multiple boxes may be needed when �CLEANing more
complicated sources� or a �eld containing many sources� In the latter case� the presence of weak
sources may be revealed only after the sidelobes of the stronger sources have been removed� so more
boxes may be needed as the �CLEAN progresses� �Note that such a posteriori de�nition of �CLEAN
boxes complicates any noise analysis��

It is hard to gauge the practical implications of Schwarzs observation that the number of degrees
of freedom should not exceed the number of independent constraints� In the presence of noise�
u�v samples can be judged independent if the di�erences in visibility due to the size of structure
expected are much greater than the noise� Counting visibility points in such a way� the aggregate
area of the �CLEAN boxes in pixels should be less than twice the number of independent visibility
samples� If the FFT is used� then the number of independent visibility samples cannot be greater
than O�NlNm�� so it is advisable to use �CLEAN boxes�
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Given the uncertainty in determining the number of independent data points� and hence the number
of constraints� caution dictates that boxes should always be placed tightly around the region to be
�CLEANed�

��� Number of iterations and the 
CLEAN� loop gain

The number of �CLEAN subtractions NCL and the loop gain � determine how deep the �CLEAN
goes� In particular� for a point source the residual left on the dirty image is �� � ��NCL � Hence�
to minimize the number of �CLEAN subtractions �and so to minimize the CPU time� � should be
unity� one then �nds� however� that extended structure is not well represented in the corresponding
�CLEAN image� In typical VLA applications a reasonable compromise lies in the range ��� �
� � ���	� �Note that this dependence of the �CLEAN image on the loop gain demonstrates the
multiplicity of solutions to the convolution equation�� Lower loop gains may be required if the u�v
coverage is poor� but the improvements in deconvolution for � � ���� are generally minimal� If in
any doubt� then it is wise to experiment �e�g�� by decreasing � and increasing NCL�� One exception
to the use of low loop gain is in the removal of confusing sources� it is preferable to remove them
with high loop gain� as their structure is usually not of interest�

The choice of the number of iterations depends upon the amount of real emission in the dirty image�
One should aim at transferring all brightness greater than the noise level to �CLEAN components
�some implementations of �CLEAN allow one to specify a lower intensity limit to the components
instead of NCL�� �CLEANing deep into the noise is usually a waste of time unless you speci�cally
wish to analyze the extended� low surface�brightness emission �but see Section ��� below��

Examination of the list of �CLEAN components� and� in particular� of the behavior of the accumu�
lated intensity in the model� is useful in detecting divergence� sometimes the accumulated intensity
diverges� As discussed above� divergence of the H�ogbom �CLEAN is always due to a computational
problem� Possible culprits are the gridding process� aliasing� and �nite precision arithmetic� In the
case of the Clark or the Cotton�Schwab algorithms� the truncated dirty beam patch that is used
in the minor cycles of these algorithms must violate Schwarzs conditions� Therefore both may be
subject to instability or divergence if the minor cycle is prolonged unduly�

��� The problem of short spacings

Deconvolution implicitly interpolates values for un�sampled u�v spacings� In most cases �CLEAN
does this interpolation reasonably well� However� in the case of short spacings the poor interpolation
is sometimes rather more noticeable since very extended objects have much more power at the short
spacings� The error is nearly always an underestimation and is manifested as a �bowl� of negative
surface�brightness in which the source rests� In such a case� introducing an estimate of the zero�
spacing �ux density into the visibility data before forming the dirty image can help considerably�
The appropriate value of this �ux density would be that measured by a single element of the array�
In practice� however� single array elements rarely have su�cient sensitivity or stability to provide
this estimate accurately� Values estimated from surveys made with larger� more sensitive� and more
directive elements are therefore frequently substituted� Choosing the weight for the zero�spacing
�ux density is di�cult� the best estimate seems to be simply the number of un�lled cells around the
origin of the gridded u�v plane� However� the results obtained are fairly insensitive to the value used
provided that the �CLEAN� deconvolution goes deep enough�
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The �CLEAN windows or boxes o�er a way to constrain the shape of the visibility function V �u� v�
near the zero spacing u � v � �� For this reason� careful choice of �CLEAN windows may also
minimize problems associated with the short spacings�

After �CLEANing� the emission should be� but is not guaranteed to be� distributed sensibly over the
�CLEAN image� Failure of the interpolation is indicated by the presence of a �pedestal� of surface
brightness within the �CLEAN box upon which the source rests� Such a pedestal all over the image
can be caused by insu�cient �CLEANing� one can experiment by simply increasing NCL�

Ultimately� of course� it may be necessary to measure the appropriate short�spacing data!

��� The 
CLEAN� beam

The �CLEAN restoring beam is used to suppress high spatial frequencies that which are poorly
estimated by the �CLEAN algorithm� There are two competing opinions on this in the radio
astronomy community� some object that it is purely ad hoc and is undesirable"in the sense that
the equivalent predicted visibilities do not then agree with those observed� Others defend it as a
way of recognizing the inherent resolution limit� In practice� re�convolving with a �CLEAN beam
seems to be necessary to produce astrophysically reasonable images�

The most common way to choose the �CLEAN beam is to �t an elliptical Gaussian to the main
lobe of the dirty beam� This choice is a compromise between resolution and apparent image quality�
however� and either larger or smaller beams may be appropriate in some cases� If one is prepared
to tolerate a decrease in the apparent quality of the �CLEAN image� and if both the signal�to�noise
ratio and the u�v coverage are good� then a smaller �CLEAN beam can be justi�ed�

Various attempts have been made to improve the choice of the �CLEAN beam� The dirty beam�
truncated outside the �rst zero�crossing� is appropriate in some applications since it lacks the ex�
tended wings of a Gaussian� but we emphasize that� after convolution with such a beam� just as in
the case of a Gaussian clean beam� the �CLEAN image does not agree satisfactorily with the original
visibilities� An ideal �CLEAN beam might be de�ned as a function obeying three constraints�

�� Its transform should be unity inside the sampled region of the u�v plane�

�� Its transform should tend to zero outside the sampled region as rapidly as possible�

�� Any negative sidelobes should produce e�ects comparable with the noise level in the �CLEAN
image�

Constraint ��� is usually the �rst to be relaxed� and then only positivity of the transform is necessary�
It may be that in typical applications �CLEAN performs so poorly that these constraints do not
allow an astrophysically plausible �CLEAN image� however such a topic is probably worth further
consideration�

An important consequence of choosing the �CLEAN beam poorly is that the units of the convolved
�CLEAN components may not agree with the units of the residuals� The units of a dirty image are
poorly de�ned� but can be called �Jy per dirty beam area� because an isolated point source of �ux
density S Jy will appear in the dirty image as a dirty beam shape with amplitude S Jy per dirty
beam area� An extended source of total �ux density S Jy will be seen in the dirty image convolved
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with the dirty beam� but the integral will not� in general� be S Jy� However� convolved �CLEAN
components do have sensible units of Jy per �CLEAN beam� which can be converted to Jy per unit
area since the equivalent area of the �CLEAN beam is usually well�de�ned� If �CLEAN is run to
convergence� the integral of the �CLEAN image will often be a good estimate of the �ux density
of an extended object� failing only if the u�v coverage fails to sample the true peak visibility of the
source adequately on the shortest spacings� If convergence is not attained� then both �ux density
and noise estimates obtained from the �CLEAN image can be signi�cantly in error�

���� Use of a priori models in 
CLEAN�

A priori models of sources can be used to good e�ect in �CLEAN� A good example is in the
�CLEANing of images of planets� In this case the visibility function of a circular disk can be
subtracted from the observed visibilities before making the dirty image� �CLEAN is then asked only
to �nd the small perturbations from the disk model� so the image quality and speed of convergence
can both be improved�

���� Non�uniqueness of 
CLEAN� images

A major drawback to the use of �CLEAN is the way in which its answers depend upon the various
control parameters� the location of �CLEAN boxes� the loop gain � and the number of �CLEAN
subtractions� By changing these one can� even for a relatively well�sampled u�v plane� produce
noticeably di�erent �nal images� In the absence of an error analysis of �CLEAN� one can do
nothing about this except practise vigilance and avoid interpreting any aspects of an image that are
unstable to the choice of control parameters�

Part of our purpose in this tutorial is to make you aware of e�ects that should keep you from being
over�con�dent in the �nal images produced by �CLEAN� In almost any astronomical application�
Monte Carlo tests of �CLEAN� and comparisons of its results with those of other deconvolution
methods� are illuminating� They remain the only practical way to estimate the e�ects of data errors
and of di�erent �CLEANing strategies on the �nal image�

Eventually� you will gain experience of applying �CLEAN to a wide range of di�erent images� This
experience will let you guide �CLEAN to plausible results more quickly� The �CLEAN images that
you then produce may not be intrinsically more reliable� but you will have calibrated your use of
them for astrophysics much better!

���� Instabilities

One instability of �CLEAN is well known� its images of extended sources are sometimes modulated
at spatial frequencies corresponding to un�sampled parts of the u�v plane �e�g�� Cornwell ������
Convolution with a larger �CLEAN beam than usual can mask this problem� especially if the un�
sampled regions are in the outer parts of the u�v plane� Reducing the loop gain � to very low values
generally has little e�ect� Various modi�cations to CLEAN have been invented to try to combat
this problem �see e�g� Cornwell �������� but overall the experience is that the best solution is to use
another deconvolution algorithm� such as MEM�
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The occurrence of the stripes is a natural consequence of the incorrect information about radio
sources embodied in the �CLEAN algorithm� Astronomers have not found much evidence for real
stripes in radio sources� so they are skeptical about stripes in �CLEAN images� Unfortunately the
only a priori information built into �CLEAN� via the use of �CLEAN boxes� is that astronomers
prefer to see mainly blank images� there is no bias against stripes� These and other considera�
tions motivated the development of deconvolution algorithms which incorporate extra constraints
on astrophysically plausible brightness distributions or which are claimed to produce� in some way�
optimal solutions to the deconvolution equation� MEM is an example of the latter�

� The Maximum Entropy Method 	MEM


We have seen that deconvolution tries to select one answer from the many that are possible� �CLEAN
uses a procedure to select a plausible image from the feasible set� Some of �CLEAN�s problems arise
just because it is procedural� so there is no simple equation describing the output image� This makes
it di�cult to analyze the errors �noise� in �CLEAN� By contrast� the Maximum Entropy Method
�MEM� is not procedural� the image selected is that which �ts the data� to within the noise level�
and also has maximum entropy� The use of the term entropy has lead to some confusion about
the justi�cation for MEM� There is no consensus on this subject �e�g�� Frieden ����� Wernecke �
DAddario ���
� Gull � Daniell ����� Jaynes ����� Narayan � Nityananda ����� ���
� Cornwell
� Evans ���	�� The authors preferred justi�cation de�nes the entropy as something which� when
maximized� produces a positive image with a compressed range in pixel values� Image entropy
thus de�ned is therefore not to be confused with a �physical entropy� �see Cornwell ����a�� The
compression in pixel values forces the MEM image to be �smooth�� and the positivity forces super�
resolution on bright� isolated objects� There are many possible forms of this extended type of
entropy� see e�g�� Narayan � Nityananda ����� but one of the best for general purpose use is�

H � �
X
k

Ik ln
Ik
Mke

� ���

where Mk is a �default� image that incorporates a priori knowledge about the object� For example�
a low resolution image of the object can be used to good e�ect as the default�

A requirement that each visibility point be �tted exactly is nearly always incompatible with the
positivity of the MEM image� Consequently� data are usually incorporated in a constraint that the
�t� ��� of the predicted visibility to that observed� be close to the expected value�

�� �
X
r

��V �ur� vr� � bV �ur� vr����
	�
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� ����

Simply maximizing H subject to the constraint that �� be equal to its expected value leads to an
image which �ts the long spacings much too well �better than �	� and the zero and short spacings
very poorly� The cause of this e�ect is that the entropy H is insensitive to spatial information� It
can be avoided �Cornwell � Evans ���	� by constraining the predicted zero�spacing �ux density to
be that provided by the user�

Algorithms for solving this maximization problem have been given by Wernecke � DAddario ����
��
by Cornwell � Evans ����	�� and by Skilling � Bryan ������� The Cornwell�Evans algorithm was
coded in the NRAOs Astronomical Image Processing System � classic AIPS � as �VTESS� This
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algorithm works well for many cases and its code is in the public domain� It is generally faster than
�CLEAN for larger images� the break�even point being around � million pixels�

MEM is an extremely �exible approach to deconvolution that can readily handle heterogeneous data
types� this has made it particularly powerful for mosaicing�

��� The default image �prior distribution�

Equation � implies that if no data constraints exist� the MEM image is the default image� so the
MEM image is always biased towards the default� A reasonable �default default� image is �at�
with total �ux density equal to that speci�ed� A low�resolution image� if available� can be used as
the default to good e�ect� this is a way to combine single�dish data with interferometric data� for
example�

��� Total �ux density

As described above� if the total �ux density in the MEM image is left unspeci�ed then the value
found may be seriously biased if the signal�to�noise ratio is low� There is no way around this at
the moment� except to guess a value and then adjust it to get an image that looks �reasonable�"
for example� possessing a �at baseline� For bright objects� only an order�of�magnitude estimate is
required to set the �ux density scale� The estimated �ux density is not then �tted� but is used only
to set a reasonable default image� Guessing low by about an order of magnitude often works well�

��� Varying resolution

In the folklore� MEM is criticized for resolution that depends on the signal�to�noise ratio� But there
are sound theoretical reasons to believe that this e�ect is common to all nonlinear algorithms that
know about noise �Andrews � Hunt ������ If you want to ��x� the resolution in MEM� the best
answer is to do as is done in CLEAN� convolve the �nal MEM image with a Gaussian beam of
appropriate width to smear out the �ne scale structure� and add the residuals back in�

There are occasions when the super�resolution exhibited by MEM images is reliable� although it is
not yet feasible to predict these in advance�

��� Bias

Another common complaint about MEM is that the answer is biased� i�e�� that the ensemble average
of the estimated noise is not zero� This is true� it is the price paid by any method which does not try
to �t exactly to the data as �CLEAN does� Bias in an estimator is both common and acceptable� as
it usually leads to smaller variance� Cornwell ������ has estimated the magnitude of the bias� and
has shown that it is much less than the noise for pixels having signal�to�noise ratio much greater
than one� In fact� with good u�v coverage� for bright pixels the e�ect of noise on an MEM image is
similar to that on a dirty image� The e�ect of bias can be substantially reduced by using a reasonable
default� such as a previous MEM image smoothed with a Gaussian� then only the highest spatial
frequencies are biased� The e�ect of bias can also be eliminated by adding back the residuals� after
ensuring a similar �ux scale via convolution of the MEM image with a Gaussian �as outlined above��
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��� Point sources in extended emission

Most of MEMs power to remove sidelobes comes from the positivity constraint� Hence� if the
source sits on a background level of emission� then the sidelobes will not be removed fully� The only
consistently e�ective solutions are either �a� to remove point sources using �CLEAN� whose modeling
assumption is better suited to them� or �b� to smooth the dirty image prior to deconvolution� In
our experience� �a� is superior�

� Comparing �CLEAN� and MEM

�CLEAN has dominated deconvolution in radio astronomy since its invention� but has not been
widely used in other disciplines� Its decomposition of the image into point sources is is often not
appropriate for other types of image� In contrast� MEM has spread to many disciplines� probably
because most of its justi�cation is independent of the type of data to which it is applied�

The philosophy behind MEM is intriguing and may convince some of you about the objectivity of
MEM �see Jaynes ���� for an exposition of MEM from its inventor�� For those of you who do not
become acolytes� the practical di�erences between �CLEAN and MEM may be more interesting�

�CLEAN is nearly always faster than MEM for small and simple images for which its approach
of optimizing a small number of pixels is more e�cient� For typical VLA images� the break�even
point comes at around a million pixels of brightness� For large� complicated images such as those of
supernova remnants at high resolution �up to ��� million pixels�� �CLEAN is impossibly slow so an
MEM�type deconvolution is mandatory�

�CLEAN images are nearly always rougher than MEM images� This may be traced to the basic
iterative scheme� In CLEAN�� what happens to one pixel is not directly coupled to what happens
to its neighbors� save by the data constraints� so there is no mechanism to introduce smoothness�
MEM couples pixels by minimizing the spread in their values� so the resulting images are smooth
although the entropy term does not explicitly embody spatial information�

Both MEM and �CLEAN fail on some types of structure� �CLEAN usually makes extended emission
blotchy� and may introduce coherent errors such as stripes� MEM copes poorly with point sources in
extended emission� Both work quite well on isolated sources with simple structure� and can produce
meaningful enhancement of resolution� though MEM does slightly better in most cases� Both do
poorly on mildly resolved objects� a surprising result that was �rst demonstrated by Briggs ����	��
and that was the motivation for investigating algebraic deconvolution� see Section � below�

Both MEM and CLEAN can behave problematically when interpolating at the inner edge of the
sampled u�v plane� MEM tends to over�estimate the intensity of the broadest�scale emission �the
positivity bias�� whereas �CLEAN tends to underestimate it�

Since MEM tries to separate signal and noise� it is necessary to know the noise level reasonably well�
Also� as mentioned above� knowledge of the total �ux density in the image helps considerably� Apart
from this� MEM has no other important control parameters� although it can be helped enormously
by specifying a default image� �CLEAN makes no attempt to separate out the noise� so speci�cation
of the noise level is not required� The main control parameters are the loop gain �� and the number
of iterations NCL� both of which are important in determining the �nal deconvolution�
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The default image of MEM is a powerful way to introduce a priori information� The e�ect of the
default image can be easily mimicked by �CLEAN� the default image is simply used as the starting
point for the collection of �CLEAN components� The use of a disk model for a planet is an example
of the use of a default in �CLEAN�

Both �CLEAN and MEM perform better if either any bright point sources are removed beforehand
or that the dirty images are constructed such that the such point sources are exactly registered at
pixels� Without this latter registration� �CLEAN attempts to construct a multi�component �i�e�
extended� model of such sources to represent their positional o�set� It is possible for the algorithm
to correct itself by the use of negative �CLEAN components� but its attempts to do this complicate
the assessment of how well �CLEAN is progressing� As point�source misregistration also creates
di�cult problems for positivity�constrained algorithms such as MEM� it is much better to choose
image centers and pixel sizes to avoid it for the brightest compact features in any image�

� Algebraic deconvolution

Since synthesis telescopes are linear devices� one might expect linear algebra to be of use in image
deconvolution� Andrews � Hunt ������ �rst analyzed image deconvolution problems in terms of
linear algebra� In principle� one can express the deconvolution problem as a matrix equationAS � D
where S is a vector of the �unknown� intensity distribution on the sky and D represents the observed
data that constrain S via the measurement matrix A�

In the image plane�D represents the pixel values in the dirty image andA the dirty beam pattern that
relates values in S and D� The elements of S would be the strengths of the ��function components
in the CLEAN representation� for example�

In the u�v plane� D represents the real and imaginary parts of the visibility samples V �u� v�� and A
contains the sine and cosine terms that represent the Fourier transform relationship between S and
D�

If the extent of the source brightness is poorly known then the S vector can contain many elements�
The A matrix is then almost certainly singular� so there are either no solutions to AS � D� or
in�nitely many �the �invisible distribution� problem�� However� if the source extent is su�ciently
small then the A matrix may be non�singular and a unique solution may be possible� Even if A is
mildly singular� it may be that quite reasonable contraints on the solution S lead to an e�ectively
unique solution� A serious practical obstacle to the use of linear algebra in the past has been the
computing problem� since the size of A goes roughly as the square of the number of pixels� for
many solution algorithms� the solution time goes roughly as the sixth power of the number of pixels�
However� modern workstations have su�cient resources to allow linear algebra�based deconvolution
of images with up to 	����
��� pixels� Such algorithms have been investigated by Briggs ����	��

��� Singular value decomposition

Singular value decomposition �SVD� is a general linear�algebraic tool for dealing with singular or
near�singular matrices �Noble � Daniel ������ It is a generalization of eigenfunction analysis to
systems split into two domains� such as the sky and the u�v planes� SVD determines the form
of S which has minimum length by discarding the singular or near�singular terms in the formal
algebraic solution� Briggs ����	� brie�y discussed the use of SVD for deconvolving VLBA data� he



� OTHER METHODS INCLUDING HYBRIDS ��

showed that for about ���� pixel intensities and visibilities� SVD produces an image whose quality
is subjectively on a par with that of �CLEAN� but at the cost of large memory use and of long
running time �on IBM RS#
����	�� workstations��

��� Non�negative least�squares

Non�negative least�squares �NNLS�� introduced by Lawson � Hanson ������� also solves the basic
matrix equation algebraically� but subject to the added constraint that S contains no negative
elements� In principle� the algorithm has the merit that� given su�cient time� it will satisfy well�
de�ned termination conditions� and thus requires no arbitrary cuto� parameter� This makes it a
�hands�o� algorithm whose output is not susceptible to mis�tuning by unfortunate choice of the
input parameters� In practice� however� the computation time and memory usage can be impossibly
large if the number of non�zero pixels exceeds about 
���������

The point source model output by NNLS is again smoothed with a Gaussian beam and added to
any residual emission when making the �nal image�

NNLS distinguishes itself on bright� compact sources that neither �CLEAN nor MEM can process
adequately� Briggs showed that on such sources� both CLEAN and MEM produce artifacts that
resemble calibration errors and that limit dynamic range� NNLS has no di�culty imaging such
sources� It also has no di�culty with sharp edges� such as those of planets or of strong shocks�
and can be very advantageous in producing models for self�calibration for both types of sources�
Briggs ����	� showed that NNLS deconvolution can reach the thermal noise limit in VLBA images
for which �CLEAN produces demonstrably worse solutions�

NNLS is therefore a powerful deconvolution algorithm for making high dynamic range images of
compact sources for which strong �nite support constraints are applicable�

 Other methods� including hybrids

Braun � Walterbos ����	� proposed a way to address the problem of incomplete short spacing
information in the absence of other shortcomings in the visibility sampling� A least�squares �t to
a matched functional form is used to analytically continue the background beneath the locations
of extended sources� The technique is e�cient and successful for this restricted problem where the
con�nement constraint can be applied e�ectively�

Hybrid techniques try to exploit the virtues of several algorithms simultaneously while avoiding their
pitfalls� For example� the awkward but common problem of deconvolving compact structure on an
extended background can be tackled by �CLEANing the compact structure down to the level of the
extended emission� followed by a MEM deconvolution of what remains� The component models of
each method are then combined� restored� and added to the residuals�

A variant of this approach which is also e�ective for multi�pointing deconvolution problems consists
of �CLEANing the individual pointings at the full available resolution and forming the linear combi�
nation with appropriate weighting� while using MEM to simultaneously deconvolve the data at low
resolution� These results are merged by extracting the inner Fourier transform plane of the MEM
result and combining it �with appropriate normalization� with the outer Fourier transform plane of
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the �CLEAN result and back�transforming� Such techniques o�er considerable promise to general
application� especially if their use can be streamlined�

It is ironic that� formally� more is known about the type of images generated by MEM than by
�CLEAN �see e�g�� Narayan � Nityananda ���
�� since �CLEAN is rather more widely used� Indeed
many criticisms of MEM arise because certain of its properties� such as the bias� can be analyzed�
Schwarzs analysis of �CLEAN is incomplete in that it does not address the interesting under�
determined case in which there are fewer data than pixels� We hope that someday this problem
might be investigated satisfactorily�

Although deconvolution algorithms are now as important in determining the quality of images pro�
duced by a radio telescope as the receivers� correlators and other equipment� they are far less well
understood� A good description is that they are poorly engineered� Only further research and
development of new and existing algorithms can redress this imbalance�
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