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1. The de Broglie Relations

1924 de Broglie proposed that a moving particle should exhibit wave-like
properties with a wavelength given by #
h

.= = (h = Planck's Constant) (1)

1927 Davisson and Germer verified this by bombarding nickel crystal with
electrons. Regular lattice gives electron diffraction pattern.

1928 G.P.Thomson passed a beam of electrons through a metal foil. Random
arrangement of crystal surfaces in foil gives symmetric diffraction rings.

It is not possible rigorously to prove the Broglie relations from simpler
postulates. Some books may give the appearance of doing so, but there will always
be a carefully concealed assumption somewhere in their treatment. The best approach
is probably to regard the wavelength-momentum relation and the energy-frequency
relation

E = hv . (2)

as experimental observations. Some plausibility can be given to the relations
however by the following lines of argument :

Consider a particle, initially with momentum
Pys travelling in a region in which its
potential is Vl at an angle Gl with the normal
to a plane boundary. On the other side of the

boundary the potential is V2. If V2 is less

than V.,

across the boundary, and comes off with a momentum Py at an angle ©

the particle is accelerated going
o The total

energy of the particle must be unchanged by this process, and we can put :

E = Tl + Vl = T2 + V2 (3)

Also, as no force acts on the particle in the plane of the boundary, there is no
change of momentum in this plane, and we can write

p, -5ing; = p,.sind, (4)

Now consider the refraction of a wave at the plane boundary between two regions
with refractive indices n; and N,. We can say immediately that

vl =\?2 (i.e. the wave frequency is unaltered) (5)
nl/n2 = sin@l/sinO2 (Snell's Law) (6)
But nl/n2 = xl/xz - k2/kl, where k = 2m/\
Therefore (6) can be written in the form  k,.sin, = k,.sine, (7

By comparison of (4) and (7), it seems reasonable that if we are to associate
wave-like properties with particles, we should expect to link together the
quantities p and k between the particle and the wave, using a law p = fk, where B
is some constant. Note that this does not mean that we should expect B to be a
given number for all particles, so that B might be different for an electron, a
proton, a neutron, etc.

We cannot say anything quite so specific by considering (3) and (5) together. The
most we can expect to say is that E must be associated with some function of ¥V, the
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form of the function being so far quite arbitrary. (Obviously, if E = F(V), then E
is constant if ¥ is constant, whatever the form of the function F) To decide what
the function must be, we have to consider an experiment in which E (or + ) is
allowed to change.

— V<ew Consider a particle with initial velocity
W, being reflected normally from a moving
plate. The collision is perfectly elastic,
and the velocity V of the plate is very
much less than v. The particle rebounds with
a velocity

v
o

vt = v -2V
If the mass of the particle is m, then the change in its energy during the reflexion
is
MB = AT = A3mvP) = mv.Av = mv.2V = 2pV (8)
Writing p = Pk in accordance with the previous érgument, AE = B.2kV (9)

Now consider a wave, with phase velocity c¢, incident on a mirror moving with veloweity
V. If the wave arrives normally, the reflected wave suffers a Doppler shift given by

& _ 2V

Y ~ ¢

Therefore AV 2V.(1/N) = 2V.(k/2%) = 2kV/2% (11)
Substituting for 2kV in (9) from (11), we get

(you should be able to prove this) (10)

AE = B.2T.AY , or AE = B.AW (12)

Now (12) is the differential form of a law E = W + constant. This is the other
de Broglie relation (when applied to material particles), and the constant arises
because we do not define energies with respect to absolute zeroes. Thus, if we were
trying to associate waves with particles in some way, it would be a sensible start
to postulate the connexions

P=Bk and E:Bw

Now in fact the constant B = h/2n = # was found to work for photons, and it turns
out that de Broglie was right in anticipating that it should work for material
particles also.

The above arguments do not of course PROVE the de Broglie relations, but they show
that the relations are not really very surprising. If the Davisson and Germer
experiment had failed to detect any wave properties, the above discussion would be
dismissed as idle monkeying with symbols, no doubt!

2. Waves and Wave Equations

The equation L Wb.elLOt mey be thought of as representing

a vector of length Wb rotating in the complex plane.
The projection of the motion onto the real

o
wt"'s axis is an S.H.M. with period T = 27/ .
\ The complex exponential notation therefore

provides us with a convenient shorthand for
writing down S.H.M's if we understand that only
the real pert R(¥) is to be assigned meaning.

The expression V= Wb.ei(kx +Wt)

represents a travelling wave in one dimension,
because R(V¥) gives an S.H.M. whose phase depends on x with spatial periodicity A =
2n/k and temporal periodicity T = 2m/W . The equation governing the propagation of
such a wave can be derived from this expression in the following way.

oV . o . o
Tx- = J_Ew H = lh)w (13)
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Therefore the OPERATION of partially differentiating ¥ w.r.t. x has the same result

as the operation of multiplying by ik. Thus, as far as ¥ is concerned, we can write
the OPERATOR identity

B ald

Tt G 4
= o : 19
Similarly, 7% =, W= - (15)

(Those doing Whole Maths should recognise that ¥V is an eigenfunction of the operator
0/0x, with corresponding eigenvalue ik)

To get the equation of propagation of a wave from (14) and (15) all we have to do is
to relate k to W by the dispersion relation

w
= e (16)
This, taken with (14) and (15) gives the identit 10 _ 119 or the equation
’ L &L J I9x " ¢i0t 4
ov 14V
e ol (17)

This is of course not the eguation we usually call "the" wave equation. It represents
the propagation of a wave all right, but only in the direction of negative x. This
can be seen immediately from the dispersion relation (16), for as W is necessarily
positive, so must k be, and this implies that only one direction of propagation has
been admitted. To include both directions of propagation we must use the relation

¥ = W2/c? (18)

for then positive W can imply positive or negative k. The equation obtained by using
(14) and (15) in conjunction with this dispersion relation is then

2 2
é—g=%?—§ (19)
ox c ot

This is "the" wave equation. It is the one most commonly met with in physics because
we normally wish to consider both directions of propagation for our waves. The point
to be made here is that there are many different "wave equations™, and that (19) is

merely a special case which happens to get most of our attention.

3. De Broglie Waves and Schrodinger's Equation

Now consider the equation which governs the propagation of de Broglie
waves (or "matter waves"). This will be a very useful equation to have because it
will enable us to work out how the de Broglie waves will spread themselves in a
given situation, and therefore eventually to decide how particles will behave in
experiments like the Davissen and Germer experiment. The eguation will be derived
in exactly the same way as (17) and (19) were derived zbove.

We write a de Broglie wave in the form VU = Wo.exp(ikx + iwt), then (14) and (15)
are true. Using the de Broglie relations (1) and (2) in the form
p=8k and E =4Hw

H o ¢
we get P=T3% and E = 3T (20)
What is to be the dispersion relation corresponding to (16) or (18) for the de Broglie
waves ? We want a relation between k and () , or equally well in this case between p

and E. In the non-relativistic case (and the relativistic case is much too difficult
to be considered for the present), we can put

E=T+7V
2 ;
:_:E_+V(X) (21)
2m

Here V(x) is the one-dimensional potential in which the particle moves with momentum
p(x), the total energy E being constant. Using (21) as a dispersion relation, and

the equations (20) as the operator identities, we reach the equation :



«nazw

2m ax

- V() = - m.g‘f (22)

Note that V(x) may be V(x,t) also.

If we write W¥(x,t) = @(x).exp(-iEt/#), in accordance with the expression
for 6/0t in (20), then we can write the simpler time-independent equation

T2
Ll (z-vx)g=0 (23)
2m dx

for the spatial part @(x) alone. Equations (22) and ¢23) are known as the time-
dependent and time-independent Schrodinger Equations. It is important to realise
that they contain no more physics than the de Broglie relations and the dispersion
law (21) from which they were derived. They express these facts in 2 more useful
form, hqwever, and enable the behaviour of particles to be predicted in a systematic

way once an interpretation has been given for the functions V(x,t) and #(x).

4. The Interpretation of the Wave Function V(x,t).

S0 far we have dealt entitely in experimental observations and mathematical
deductions, but as soon as we try to explain what the quantity V¥ really represents,
we meet one of the deepest divisions of opinion in modern physics. There is no single
interpretation which is clearly more acceptable than any of the others in all
respects. If we regard the wave-function as being the "real" quantity in modern
physics, we are sometimes led into awkward deductions, and equally well if we regard
it merely as a "list of betting odds"™ on the outcome of a given experiment we must
explain how apparently independent particles manage to co-operate with one another to
show statistical behaviour.

Schrodinger attempted to represent the particles of modern physics as the
maxima of wave functions. Obviously this camnnot be done with a single monochromatic
wave-function (definite p or A), for this has en infinite number of mexima, and we
cannot point to any particular one of these and say "there is the particle". We need
to use a wave group, a combination of a number of monochromatic waves with different
wavelengths (momenta), in order to produce a well-defined maximum in the V-function
at one point. This point will be returned to later, as a mathematical analysis of this
idea provides a method of demonstrating the Heisenberg Uncertainty Principle. For the
moment we let it merely be remarked that a wave group constructed to represent a
localised particle at one instant, if allowed to disperse according to the Schrodinger
Equation, does not hold together, so that the localisation of the particle becomes
more uncertain as time goes on. Thus, if we began by "synthesising" a number of
particles in a system by constructing peaks in V-functions at 2 certain time, after a
sufficiently large interval these peaks would become so smoothed out that the
particles would be becoming indistinct and smeared out in space. This is clearly
ridiculeus, and so we are led straight away to the belief that xk=y the wave-group
peaks cannot actually be particles. It was pointed out by Born that we do not reach
any such absurd conclusions if we regard the VY-peaks as peaks in the probability of
finding particles in the given positions. Then the smearing out of the wave groups
predicted by Schrodinger's Equation only indicates the increasing statistical
uncertainty in the probable positiorms of the particles as time goes on, arising from
the fact that we could not be sure exactly where they were at the outset (because we
only dealt with wave peaks, not infinitely sharp spikes in the V-function). Born
proposed that the V-function should be regarded as generating the probability that a
particle is in a given region at a given time, or as representing a particle density
in systems where there were large numbers of similar particles.

It is immediately clear that V itself cannot be this probability or density
however, for V¥ is in general a complex number for given x and t. We cannot speak of
6 + 5i particles per cc.! Our statistical measure must be real, and so the simplest
possible function which can be identified with it is U=V, where the * denotes the
complex conjugate.

Note that V¥ = @#*(x).exp(+iEt/K) S(x) .exp(-iEBt/H) = #*@
In general we must be prepared to accept a function of the form

a(V=l) + b(W*W)z i c(\lf*\!f)3 + .. ete.




