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ABSTRACT
We present a dynamical analysis of the flow in the jets of the low-luminosity radio
galaxy 3C 31 based on our earlier geometrical and kinematic model (Laing & Bridle
2002) and on estimates of the external pressure and density distributions from Chandra

observations (Hardcastle et al. 2002). We apply conservation of particles, energy and
momentum to derive the variations of pressure and density along the jets and show
that there are self-consistent solutions for deceleration by injection of thermal matter.
We initially take the jets to be in pressure equilibrium with the external medium
at large distances from the nucleus and the momentum flux to be Π = Φ/c, where
Φ is the energy flux; we then progressively relax these constraints. With our initial
assumptions, the energy flux is well determined: Φ ≈ 9 – 14 ×1036W.We infer that the
jets are over-pressured compared with the external medium at the flaring point (1.1 kpc
from the nucleus) where they start to expand rapidly. Local minima in the density and
pressure and maxima in the mass injection rate and Mach number occur at ≈ 3 kpc.
Further out, the jets decelerate smoothly with a Mach number ≈ 1. The mass injection
rate we infer is comparable with that expected from stellar mass loss throughout the
cross-section of the jet close to the flaring point, but significantly exceeds it at large
distances. We conclude that entrainment from the galactic atmosphere across the
turbulent boundary layer of the jet is the dominant mass input process far from the
nucleus, but that stellar mass loss may also contribute near the flaring point. The
occurrence of a significant over-pressure at the flaring point leads us to suggest that
it is the site of a stationary shock system, perhaps caused by reconfinement of an
initially free jet. Our results are compatible with a jet consisting of e−e+ plasma on
parsec scales which picks up thermal matter from stellar mass loss to reach the inferred
density and mass flux at the flaring point, but we cannot rule out an e−p+ composition
with a low-energy cut-off.

Key words: galaxies: jets – galaxies:ISM – radio continuum:galaxies – X-rays: galax-
ies – hydrodynamics

1 INTRODUCTION

The measurement of basic flow variables such as velocity,
pressure and density in extragalactic radio jets has proved
to be an intractable problem, most of the estimates in the
literature being highly model-dependent (see Leahy 1991 for
a review). We have recently shown that the total and po-
larized emission of the inner jets in the nearby radio galaxy
3C 31 can be modelled accurately on the assumption that
they are symmetrical, axisymmetric, relativistic, decelerat-
ing flows (Laing & Bridle 2002), and we derived a kinematic

⋆ E-mail: rlaing@astro.ox.ac.uk

model for the jet flow that combined longitudinal decelera-
tion and a transverse velocity gradient.

In order to make further progress in understanding jet
dynamics, we need a physical model for the deceleration
process. Mass loading must occur, but without disruption
of the flow. As Begelman (1982) first pointed out, a jet can
decelerate without being completely decollimated, but only
in the presence of an external galactic pressure gradient,
which effectively transforms heat back into kinetic energy.
It is not straightforward to estimate the mass input from
observations: synchrotron emission gives no direct evidence
for the jet composition on kpc scales, and constraints from
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2 R.A. Laing & A.H. Bridle

Faraday rotation are weak. Two principal mechanisms have
been proposed for mass loading:

(i) injection from stellar winds within the volume that
is traversed by the jet (Phinney 1983; Komissarov 1994;
Bowman, Leahy & Komissarov 1996), and

(ii) entrainment from the galactic atmosphere across an
unstable boundary layer, and subsequent communication
with the rest of the jet through ingestion of the thermal
material and viscous interactions (Baan 1980; Begelman
1982; Bicknell 1984, 1986; De Young 1996; Rosen et al.
1999; Rosen & Hardee 2000).

In the remainder of this paper, we will refer to these pro-
cesses as internal and external entrainment, respectively.

The majority of theoretical work in the literature con-
cerns non-relativistic jets, but there have been two ap-
proaches to the quantitative study of relativistic jet decel-
eration: through analytical models and simulations (Komis-
sarov 1994; Bowman et al. 1996) and through conservation
law analysis (Bicknell 1994). Komissarov (1994) considered
analytically the case of an electron-positron jet decelerating
as a result of internal entrainment and Bowman et al. (1996)
made numerical simulations of decelerating electron-proton
jets. Both of these references assumed that the jet dynamics
were dominated by thermal particles (with energies too low
to be seen via synchrotron radiation), although some of the
cases they considered were hot enough to have a relativistic
equation of state. These calculations were not designed to
be compared directly with observations of individual objects
and are restricted to internal entrainment.

Bicknell (1994) used the laws of conservation of mass,
momentum and energy in a quasi-one-dimensional approx-
imation to demonstrate the feasibility of deceleration from
pc to kpc scales for relativistic jets, considering two specific
sources: NGC315 and NGC6251. In contrast to Komissarov
(1994) and Bowman et al. (1996), Bicknell assumed that
relativistic particles are energetically dominant, and there-
fore that an ultra-relativistic equation of state is appropriate
throughout. His formulation is general enough to cover both
internal and external entrainment.

Our model for the jets in 3C 31 provides one essential
ingredient for a dynamical analysis – the velocity field – but
we also need to estimate how much mass participates in the
flow. Our solution for the jet kinematics can be used to con-
strain the mass flux using the conservation-law formalism
of Bicknell (1994), but only if we also have an accurate
prescription for the external pressure and density. Such a
prescription has recently been derived from Chandra obser-
vations by Hardcastle et al. (2002), and the present paper
describes the resulting dynamical analysis of jet deceleration
in 3C31.

The conservation-law approach is described in Sec-
tion 2. The results are presented in Section 3 and are dis-
cussed in the context of theoretical models in Section 4. Our
conclusions are summarized in Section 5.

Throughout this paper, we adopt a Hubble constant H0

= 70 kms−1 Mpc−1. We take the redshift of NGC383 (the
parent galaxy of 3C 31) to be 0.0169; this is the mean of
values from Smith et al. (2000), Huchra, Vogeley & Geller
(1999) and De Vaucouleurs et al. (1991). The resulting con-
version factor between angular and linear size is 0.34 kpc
/arcsec. We refer to two quantities that are conventionally

notated as β. We use β alone for the normalized velocity v/c,
and βatm for the form parameter in models of hot galactic
atmospheres.

2 CONSERVATION-LAW ANALYSIS

2.1 Overview

Our analysis uses conservation of particles, energy and mo-
mentum, and is based on that of Bicknell (1994), but with
some important differences:

(i) We take the angle to the line of sight, velocity, and
area of the jets from our kinematic model, thereby removing
a number of free parameters.

(ii) We do not need to make any assumptions about the
relation between the internal pressure p of the jet and the
synchrotron minimum pressure psync, other than that p ≥

psync.
(iii) We infer the density and pressure distributions of the

surrounding medium from X-ray observations.
(iv) The effects of buoyancy are significant for our anal-

ysis, and we include them.

The analysis remains quasi-one-dimensional, in the sense
that we consider only the component of velocity along the
jet axis, but we allow the jet’s cross-sectional area to vary.
We justify this assumption by noting that the maximum an-
gle between the flow direction and the jet axis is 19◦. The
axial velocity component is >0.945 of the total velocity even
at the edge of the jet in the region where the lateral expan-
sion is most rapid. The error in the quasi-one-dimensional
approximation is therefore small compared with the uncer-
tainties we consider below.

2.2 Geometry: the three jet regions

The essential features needed from the kinematic model
(Laing & Bridle 2002) are the geometry and velocity field
of the jets. We divide the jets of 3C 31 into three regions
by the shapes of their outer isophotes (Fig. 1; see Laing &
Bridle 2002 for more details). The regions also turn out to
be distinct in their kinematic structures (Fig. 2). We have
used the fitted angle to the line of sight (52.4◦) to correct for
projection, and all distances are given in a plane containing
the jet axis. The regions are:

Inner (0 to 1.1 kpc): a cone of intrinsic half-angle 6.7◦

in which the fitted central velocity is 0.8 – 0.9c. There is
no unambiguous evidence for deceleration, but a significant
component of emission appears to come from slow-moving
material.
Flaring (1.1 to 3.5 kpc): the outer isophotes spread

rapidly and then recollimate. The boundary with the inner
region appears to mark a discontinuity at which the emissiv-
ity increases abruptly and the velocity probably decreases.
In this region, the jets decelerate rapidly after an initial slow
decline in velocity.
Outer (3.5 to 12 kpc): the jets continue to expand in a

cone of intrinsic half-angle 13.1◦ and decelerate smoothly.

We refer to the boundary between the inner and flaring re-
gions as the “flaring point”, following Parma et al. (1987).
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Jet deceleration 3

Figure 1. The model geometry for the jets in 3C 31, showing the
three regions.

We do not attempt to apply the conservation-law approach
to the inner region, for several reasons. Firstly, the jets are
weak and poorly resolved close to the nucleus, so our conclu-
sions about their velocity structure are tentative. Secondly,
our formalism cannot handle the inferred discontinuity in ve-
locity and pressure at the flaring point without introducing
extra complexity. Finally, the external pressure and density
are uncertain at very small distances from the nucleus, where
the X-ray emission from core, jet and hot gas is unresolved
by Chandra. In particular, the presence of an unresolved,
dense component of hot gas was postulated by Hardcastle
et al. (2002) in order to explain the observed X-ray spec-
trum of the core. We restrict our conservation-law analysis
to between 1.1 and 12 kpc from the nucleus.

In what follows, r is a radial distance from the nucleus
and A(r) is the cross-sectional area of the jets derived from
our geometrical model.

2.3 Velocity profile

In order to reduce the problem to a quasi-one-dimensional
form we need to average in some way over the transverse jet
velocity profile. For the flaring and outer regions, the best-
fitting transverse profile remains remarkably constant: the
velocity at the edge of the jet is ≈0.7 of its central value
throughout these regions. The transverse variation of emis-
sivity is also modelled, and may be used to derive the corre-
sponding relativistic particle and energy density profiles, but
only if some assumption is made about the relative energies
in field and particles. We do not know the spatial distri-
bution of the entrained material and would expect qualita-
tive differences between stellar mass loss (which would cause
material to be injected fairly uniformly) and entrainment
around the edges of the jets.

We assume that all of these complications can be
absorbed into a single velocity function β(r)c, which is
bounded at any value of r by the maximum (centre) and
minimum (edge) values of our kinematic model. The approx-
imation is reasonable, since we infer a velocity difference of
only ≈30% between centre and edge of the jet and, in order

Figure 2. Profiles of the velocity along streamlines. Full line: on-
axis; short dash: intermediate; long dash: jet edge. The on-axis

profile in our region of interest is parameterized by the values at
the flaring point (β1 = 0.767), the boundary between the flaring
and outer regions (β0 = 0.547) and a point at 9.6 kpc from the
nucleus in the outer region (βf = 0.280). In addition, the velocity
exponent H (see Laing & Bridle 2002 for more details) governs
the steepness of the deceleration at the end of the flaring region.

to slow the jet effectively, any entrained material must be-
come well mixed with the relativistic particles and field. We
have experimented with a number of expressions for β(r)
consistent with this constraint.

The widest range of acceptable solutions (in the sense
defined below) is given by a simple law in which the velocity
is a constant fraction f of the on-axis value for the kinematic
model (the full line in Fig. 2); hereafter a “constant-fraction”
profile. We have also investigated “ramped profiles” in which
the velocity decreases from the on-axis value, βc(r), at the
flaring point (r = r1) to a fraction f of the on-axis value at
the end of the modelled region (r = rmax). We present results
for a linear variation: β(r) = βc(r)[1+(f−1)(r−r1)/(rmax−

r1)]. Other functional forms give essentially identical results
for a given value of f . For both constant-fraction and ramped
profiles, we have investigated the range 0.6 ≤ f ≤ 1, the
lower bound being slightly less than the fractional velocity
at the edge of the jet in our kinematic model.

2.4 Conservation laws

Following Bicknell (1994), we make the approximation that
the jet material has an ultra-relativistic equation of state
throughout the modelled region and therefore that dissipa-
tion of bulk kinetic energy results only in an increase in the
internal energy, u, of relativistic particles and magnetic field,
with p = u/3. We also assume that the entrained enthalpy
is negligible. We have verified post hoc that an extremely
small fraction of the internal energy of the jet is lost via
synchrotron radiation in the modelled region. We take the

c© 0000 RAS, MNRAS 000, 000–000



4 R.A. Laing & A.H. Bridle

quantities Φ (the energy flux, with the contribution from
rest mass subtracted) and Π (the momentum flux) to be
conserved. From equations (18) and (27) of Bicknell (1994),
and after making the quasi-one dimensional approximation
for the buoyancy term, we have

Φ = [(Γ2
− Γ)ρc2 + 4Γ2p]βcA (1)

Π = [Γ2β2(ρc2 + 4p) + p− pext]A

+

∫ r

r1

A
dpext
dr

[

1−
Γ2(ρc2 + 4p)

c2(1 + β2)ρext

]

dr (2)

Here, p and ρ are the internal pressure and density of the
jet, pext and ρext the pressure and density of the external
medium and Γ the Lorentz factor of the bulk flow. r = r1 at
the innermost modelled point (the flaring point). Note that
we are implicitly assuming that the kinetic energy associated
with turbulence is small compared with that of the bulk
flow. Unlike Bicknell (1994), we cannot neglect buoyancy
(the second term in the equation for momentum flux), as
the solutions turn out to require transonic flow over large
distances.

The unknowns at each position are the internal pressure
and density. If the external pressure and density are known,
then for given values of the energy and momentum fluxes
Φ and Π we can solve equations (1) and (2) for the run of
internal density and pressure along the jets. In the absence
of buoyancy, there is an algebraic solution. If the buoyancy
term is significant, we can solve the equations using a simple
iterative scheme at a grid of locations from the flaring point
outwards. This is necessary because the buoyancy integral
depends on the density and pressure gradient at the current
point (equation 2).

We can then derive the generalized internal Mach num-
ber (Königl 1980):

M =
Γβ

Γsβs
(3)

where βsc is the internal sound speed,

β2
s =

4p

3(ρc2 + 4p)
(4)

(Bicknell 1994) and Γs = (1 − β2
s )

−1/2. The ratio of
rest-mass energy to enthalpy, again as defined by Bicknell
(1994), is:

R =
ρc2

u+ p
=

ρc2

4p
(5)

and the mass flux:

Ψ = ΓρβcA (6)

In order to reduce the number of unknown parameters
and hence to derive a unique solution of the conservation-
law equations, we initially take Φ = Πc. This is likely to be
a very good approximation if β is close to 1 on pc scales,
as required by Unified Models and by the observation of
superluminal motion on parsec scales in FR I jets (Urry &
Padovani 1995; Giovannini et al. 2001). The effects of drop-
ping this assumption are investigated in Section 3.3.6. We
also test the self-consistency of our other assumptions and
explore the effects of relaxing them in Section 3.3.

2.5 External density and pressure

Our estimates of the surrounding density and pressure pro-
files are taken from Hardcastle et al. (2002). The density
profile is the sum of two beta models, for the gas associated
with the central galaxy NGC383 and with the surrounding
group, respectively.

next(r) = nc(1 + r2/r2c)
−3βatm,c/2

+ ng(1 + r2/r2g)
−3βatm,g/2 (7)

The temperature is taken to be:

T = Tc + (Tg − Tc)
r

rm
(r < rm)

T = Tg (r ≥ rm) (8)

with rm = 22.8 arcsec (7.8 kpc). The pressure is calculated
according to the expression given by Birkinshaw & Worrall
(1993):

pext =
kT (r)

µX
next(r) (9)

where µ = 0.6 is the mass per particle in a.m.u. and X =
0.74 is the abundance of hydrogen by mass.

The numerical values of the parameters are listed in
Table 1 and the variations of pext and ρext with radius are
shown in Fig. 3. Note the discontinuity in the temperature
gradient dT/dr and hence in the pressure gradient dp/dr.
The latter appears in the buoyancy term of equation (2) and
therefore propagates into various derived quantities, most
obviously the entrainment rate (see below).

2.6 Selection of acceptable solutions

We aim to determine what, if any, physically-reasonable so-
lutions exist. All self-consistent solutions must have:

(i) ρ > 0 everywhere;
(ii) p ≥ psync, where psync is the synchrotron minimum

pressure;
(iii) the mass flux increasing monotonically outwards;
(iv) a convergent iterative solution for the buoyancy in-

tegral.

We also investigate the effects of additional constraints on
the ratio of internal to external pressure:

(v) the jet pressure never exceeds that of the external
medium by more than a factor of 10;

(vi) the mean ratio of the internal and external pressures
< p/pext > is in the range 0.5 – 2 in the outer region.

The over-pressure condition (v) can be justified qualita-
tively, since the jets cannot be in free expansion over the
whole of the modelled region (otherwise they would expand
with constant opening angle), and any high-pressure region
must be localised and not too over-pressured for the jet to
retain its collimation. The numerical over-pressure factor is
difficult to assess, but values of p/pext up to 12.5 have been
suggested for reconfining non-relativistic jets (Falle 1987)
and extremely high pressure jumps can occur across rela-
tivistic shocks (Bicknell & Begelman 1996). Condition (vi)

c© 0000 RAS, MNRAS 000, 000–000
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Table 1. Parameterization of the external density and temperature distributions.

Component Central density Form factor Core radius Temperature

Galaxy nc = 1.8× 105 m−3 βatm,c = 0.73 rc = 1.2 kpc Tc = 4.9 × 106 K

Group ng = 1.9× 103 m−3 βatm,g = 0.38 rg = 52 kpc Tg = 1.7 × 107 K

is derived from the supposition that the outer region must be
in at least approximate pressure equilibrium. We have looked
for solutions with and without the pressure constraints.

We have chosen to use the on-axis value of the model
emissivity ǫ(r) (Laing & Bridle 2002) to calculate a rep-
resentative minimum synchrotron pressure (ǫ varies across
the jets, so some sort of averaging is necessary). Following
Bicknell (1994), we derive the pressure assuming constant
energy limits for a power-law spectrum of radiating parti-
cles n(γ)dγ ∝ γ−(2α+1)dγ, where γ is the individual electron
Lorentz factor and γmin ≤ γ ≤ γmax.

psync =
1

6µ0

(

3 + α

1 + α

)

×

[

ǫµ0

(

1 + α

2α− 1

)

(mec
2)1−2α(γ1−2α

min − γ1−2α
max )

]
2

3+α

(10)

where me is the electron mass and µ0 is the permittivity of
free space. We also assume that there are no relativistic pro-
tons and that the filling factor is unity, to ensure that psync is
a lower limit to the correct value. Initially, we take γmin = 10
and γmax = 105. The upper limit would correspond to an
emitted frequency of ∼ 2× 1012 Hz for a minimum-pressure
magnetic field at the flaring point, roughly consistent with
the synchrotron break frequency derived from the radio –
X-ray spectrum of the inner and flaring regions by Hardcas-
tle et al. (2002). We have no direct evidence for emission at
ν ≫ 10GHz in the outer region, however. The lower limit to
the Lorentz-factor distribution is harder to estimate. Fortu-
nately, α = 0.55 for the jets in 3C 31, so the dependence of
psync on the energy limits is very weak, at least if the form of
the spectrum persists to low energies. We demonstrate the
effect of changing the energy limits in Section 3.3.4.

Our approach is to calculate models for a range of en-
ergy flux, Φ, determining which solutions are acceptable. We
start with solutions in which the jets are close to pressure
equilibrium at large distances from the nucleus, and progres-
sively relax our assumptions.

3 RESULTS

3.1 Reference model

A priori, the most physically plausible solutions are those
which are as close as possible to pressure balance in the
outer region. Although the shape of the jet in this region is
conical, consistent with free expansion of an over-pressured
flow, such solutions are not self-consistent:

(i) We infer Mach numbers M <
∼ 2 at the end of the flar-

ing region, implying a half-opening angle >
∼M−1 ≈ 30◦, at

least a factor of two larger than is observed.
(ii) We will show that the entrainment rate needed to

slow the jet is too large to be provided by stellar mass loss
alone, implying that external entrainment dominates. This
would be inconsistent with free expansion.

In what follows, we therefore adopt as our reference model
the unique pressure-matched solution with Φ = Πc and a
constant velocity fraction f = 0.85. This is close to the me-
dian of the transverse profile estimated by Laing & Bridle
2002 and is therefore consistent with the average velocity
that we infer for relativistic particles and field. An inter-
mediate (perhaps somewhat lower) value of f is also ap-
propriate for the entrained material, which is likely to be
concentrated at the edges of the jet, or distributed approx-
imately uniformly, rather than being concentrated towards
the axis. This model has an energy flux Φ = 1.1 × 1037 W
and demonstrates the qualitative properties common to all
acceptable solutions. In Section 3.2, we examine pressure-
matched solutions with other velocity laws and Section 3.3
explores the effects of relaxing the assumptions on pressure
balance and momentum flux.

3.1.1 Pressure

Fig. 4 shows the derived internal, external and synchrotron
minimum pressures for the reference model and Fig. 5 shows
the ratios p/psync and p/pext. The jet is over-pressured by
a factor ≈8 at the start of the flaring region, comes into
pressure equilibrium at 2.5 kpc from the nucleus, is slightly
under-pressured at the end of the flaring region and there-
after tracks the external pressure accurately. The local pres-
sure minimum in the outer part of the flaring region has
p < pext, implying that the rapid outward decrease of pres-
sure overshoots and then recovers to track the external
value. Although we have deliberately chosen the solution
closest to pressure equilibrium, the similarity of the func-
tional forms of the internal and external pressures in the
outer region is still significant.

We find that p/psync ≈ 2 except near the flaring point
(Fig. 5). If the pressure is contributed primarily by relativis-
tic particles and magnetic field, as we suppose, then the two
must be close to energy equipartition in the outer region. At
the flaring point, p/psync ≈ 10, so there could be a signifi-
cant departure from equipartition. This idea could, in prin-
ciple, be tested by X-ray observations of inverse Compton
emission, but the fluxes predicted for equipartition magnetic
fields are too low to be detected by Chandra (Hardcastle et
al. 2002 conclude that the X-rays observed from the inner

c© 0000 RAS, MNRAS 000, 000–000



6 R.A. Laing & A.H. Bridle

Figure 3. The variations of external (a) pressure and (b) den-
sity with radius, as derived from Chandra observations, are shown
by full lines. The dashed curve in panel (a) represents the syn-
chrotron minimum pressure psync derived from the emissivity
model of Laing & Bridle (2002) using equation (10). Although
the jet appears to be over-pressured for the first 0.5 kpc, the pres-
ence of an additional unresolved component of hot gas cannot be
ruled out (Hardcastle et al. 2002).

and flaring regions are produced by the synchrotron mech-
anism).

3.1.2 Density

The internal density (Fig. 6) is very low everywhere in the
modelled region and the density contrast η = ρ/ρext is in the
range 6 × 10−6 – 10−4 (Fig. 7). The density drops rapidly
between the flaring point and 2.7 kpc from the nucleus (i.e.

Figure 4. The internal (full), external (dashed) and synchrotron
minimum (dotted) pressures for the reference model.

Figure 5. The pressure ratios p/psync (full) and p/pext (dotted)
for the reference model.

in the region of fastest expansion). Thereafter the jet de-
celerates abruptly and begins to recollimate, causing ρ to
rise again until the end of the flaring region. The density re-
mains approximately constant over the outer region despite
the continuing expansion. Figure 8 plots the mass per unit
length, ρA, for comparison with the “linear density” esti-
mated by Rosen et al. (1999) from numerical simulations of
entraining, non-relativistic jets (Section 4.2).

We have also estimated the Faraday rotation expected
for a minimum-pressure field. For a fully ordered field, the

c© 0000 RAS, MNRAS 000, 000–000



Jet deceleration 7

Figure 6. The internal density ρ for the reference model.

rotation measures would be ≈0.03 and ≈0.04 radm−2 at the
flaring point and at the end of the modelled region, respec-
tively. A disordered, but anisotropic field (as assumed in the
models of Laing & Bridle 2002) would give even lower val-
ues. Such low rotation measures (or any associated depolar-
ization) would be impossible to measure with the frequency
and resolution combinations available to current synthesis
arrays, especially in the presence of significant foreground
Faraday rotation. In 3C 31, the Faraday rotation observed
along the jets appears to be produced by a foreground mag-
netoionic medium, almost certainly the surrounding hot gas,
and shows fluctuations in the range −120 – +20 radm−2

(Laing et al., in preparation). There is no evidence for any
component internal to the jet.

3.1.3 Mach number

The flow is always transonic (Fig. 9), the relativistic Mach
number M reaching a maximum of 2.0 in the flaring region
and falling from 1.5 to 1.1 in the outer region. As pointed
out by Bicknell (1994), velocities ∼0.3 – 0.7c inevitably cor-
respond to transonic flow for light, decelerating relativistic
jets, and this is indeed the case for our models.

3.1.4 Mass flux and entrainment rate

The mass flux along the jet is plotted in Fig. 10. Its deriva-
tive, the entrainment rate (the full line in Fig. 11) increases
rapidly to a maximum of 1.3 × 1020 kg kpc−1 s−1 at a dis-
tance of 3.4 kpc, where the mass flux curve has a point of
inflection. This maximum is a feature of all acceptable mod-
els and is a direct consequence of the rapid expansion of the
jet at roughly constant velocity, followed by abrupt deceler-
ation. Thereafter, the entrainment rate drops abruptly until
the end of the flaring region and then increases monotoni-
cally through the outer region. The change of slope at 8 kpc

Figure 7. The density contrast η = ρ/ρext for the reference
model.

Figure 8. The mass per unit length, ρA, for the reference model,
plotted for comparison with the results of Rosen et al. (1999).

is caused by the discontinuity in the assumed form for the
external temperature gradient.

We have independently estimated the rate of entrain-
ment into the jet from stellar mass loss, as follows:

(i) We started with the R-band CCD photometry of Owen
& Laing (1989), which is well fitted by a power-law surface-
brightness distribution

σ(R)/mag arcsec−2 = 15.53 − 2.5δ lg(R/arcsec)

c© 0000 RAS, MNRAS 000, 000–000



8 R.A. Laing & A.H. Bridle

Figure 9. The generalized Mach number M for the reference
model.

Figure 10. The estimated mass flux along the jet for the refer-
ence model.

with δ = 1.65. A galactic extinction of AR = 0.189 (Schlegel
et al. 1998) was removed, a K-correction was applied as in
Owen & Laing (1989) and the fit was converted to absolute
magnitude (note the change of Hubble Constant to H0 =
70 kms−1 Mpc−1 from that used by Owen & Laing 1989).

(ii) The surface-brightness distribution was then de-
projected to give the luminosity density. For a surface-
brightness distribution of the form

Σ(R) = Σ0R
−δ

Figure 11. The estimated internal mass input rate from stars
(long dashes) superimposed on the entrainment rate required by

the reference model (full line).

Figure 12. Bicknell (1994)’s parameter R = ρc2/4p, which
quantifies the ratio of bulk kinetic to internal energy, for the ref-
erence model.

this is

L(r) =

[

δΣ0

π

∫ π/2

0

(cos θ)δdθ

]

r−(1+δ)

which can be converted to solar luminosities assuming an
absolute magnitude of 4.46 for the Sun in the Kron-Cousins
R band (Cox 2000; Fernie 1983).

(iii) We then took the mass loss rate predicted by Faber &
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Jet deceleration 9

Gallagher (1976) for an elliptical galaxy stellar population
as a function of the blue luminosity, LB , in solar units,

(Ṁ/M⊙ yr−1) = 0.015(LB/109LB⊙)

which is consistent with the estimate from infrared obser-
vations by Knapp, Gunn & Wynn-Williams (1992), and
scaled it to the R band using extinction-corrected colours
for NGC383 (Sandage 1973; Schlegel et al. 1998) and the
Sun (Cox 2000), getting

(Ṁ/M⊙ yr−1) = 0.0077(LR/10
9LR⊙) (11)

This allowed us to estimate the mass-loss rate per unit vol-
ume as a function of radius for 3C 31. The assumptions are
identical to those of Komissarov (1994), except for our use
of actual galaxy photometry. The uncertainties are large:
efficient mixing is assumed, and the mass-loss rate is sup-
posed to be completely unaffected by the presence of a jet.
The dashed line in Fig. 11 shows the estimated entrainment
rate from stars, for comparison with that required to slow
the jet according to our analysis.

The required entrainment rate is very close to that ex-
pected from stellar mass loss at the flaring point and remains
only a factor of 2 larger until ≈2 kpc from the nucleus. Both
curves have their maxima at roughly the same location (close
to the point of inflection of the outer isophote), although
that for stellar mass input is much shallower. It is of course
inevitable that the latter will have a maximum, since the
jet expands and the stellar density decreases with distance
from the nucleus. Given the uncertainties, the agreement
between the two estimates in the first 2 kpc of the flaring
region is surprisingly good. The discrepancy in the outer re-
gion is much more significant as the required injection rate
continues to increase while that from stars falls off.

3.1.5 Ratio of internal to kinetic energy

Bicknell (1994) defined the parameter R = ρc2/4p, which
quantifies the ratio of bulk kinetic to internal energy. This
increases monotonically from an initial value of 0.4 to 10.6
at the end of the modelled region (Fig. 12).

3.2 Other pressure-matched solutions

For constant-fraction velocity profiles, there are physically
self-consistent, pressure-matched solutions for any velocity
fraction f in the range 0.6 ≤ f ≤ 1. For f < 0.6, pressure
equilibrium in the outer region is impossible. This value of
f is in any case slightly lower than the minimum (edge)
velocity, f = 0.7, in our kinematic model (Laing & Bridle
2002), which we take as a lower limit in what follows. As
noted in Section 3.1, the case f = 1, in which all of the
material travels at the on-axis velocity, is unlikely to be ap-
proached in practice, but we retain it as an upper bound
on acceptable solutions. Fig. 13 shows the variation of the
flow variables with distance along the jet axis for pressure-
matched models with f = 0.70 (minimum), f = 0.85 (the
reference model, as before) and f = 1 (on-axis). The inter-
nal pressures are very similar by construction, but the main
qualitative features of the reference model also remain for
the other flow variables: there is a density minimum in the
flaring region, corresponding to a maximum Mach number,

and a local peak in the entrainment rate. Faster jets (larger
f) have higher energy fluxes and Mach numbers, but lower
densities and entrainment rates. We found an accurate em-
pirical linear relation between log Φ and f from results for 9
values of f in the range 0.6 ≤ f ≤ 1. The coefficients, deter-
mined by a least-squares fit, are given in Table 2. The energy
flux is constrained to better than a factor of 2, varying from
8.7× 1036 W for f = 0.7 to 1.4× 1037 W for f = 1.

As expected, the pressure-matched solutions for the
ramped velocity profile are very similar to those for a fixed
fractional velocity and f = 1 (Fig. 13) and are therefore not
shown. There is a similar, but flatter, relation between log Φ
and f (Table 2) and the energy flux lies in a very narrow
range from 1.1 × 1037 W (f = 0.7) to 1.4 × 1037 W (f = 1).
Other velocity laws do not require significantly different en-
ergy fluxes or flow variables.

Given the uncertainties inherent in the quasi-one-
dimensional approximation, Fig. 13 therefore represents our
best estimate of the range of allowed solutions subject to
the reasonable assumptions that the outer jet is in pressure
balance and that Π = Φ/c.

3.3 Review of the assumptions

3.3.1 Uncertainties in the on-axis velocity model

Uncertainties in fitting the kinematic model to the observed
synchrotron emission result in errors in the on-axis velocity.
We have investigated the effect of varying the velocity expo-
nent and each of the three fiducial velocities (Fig. 2) inde-
pendently over the allowed ranges given in table 7 of Laing
& Bridle (2002). Fig 14 superposes seven curves to illus-
trate how the on-axis velocity uncertainties affect the flow
parameters inferred for the reference model of Section 3.1
(the pressure-matched solution with constant velocity frac-
tion f = 0.85 and Φ = Πc). The energy flux is barely af-
fected (9 × 1036 W ≤ Φ ≤ 1.2 × 1037 W). The most signifi-
cant changes are in the density and peak entrainment rate,
where the maximum spread approaches a factor of 2. The
uncertainties are generally smaller than those introduced by
varying the velocity fraction, f (Fig. 13). One feature of in-
terest is that reducing the velocity exponent H (Laing &
Bridle 2002) to its lowest allowed value, thereby smoothing
out the abrupt deceleration at the end of the flaring region,
also reduces the amplitude of the fluctuations of pressure,
density, Mach number and entrainment rate.

3.3.2 External gas density and pressure

In order to quantify the uncertainties introduced by errors
in fitting the Chandra data, we have repeated the analysis of
Section 3.1 with density and pressure profiles corresponding
to combined ±1σ uncertainties in the conversion between
central normalization and density, the β model fits and the
linear fit to the temperature gradient (as in fig. 9 of Hard-
castle et al. 2002). The changes to our solutions are small
compared with those due to other uncertainties. The energy
flux for a pressure-matched solution changes by ±20% and
the derived profiles of flow variables are not grossly affected,
as illustrated for a constant velocity fraction f = 0.85 and
Φ = Πc in Fig. 15. The pressure, density and entrainment
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10 R.A. Laing & A.H. Bridle

Figure 13. Internal flow variables derived from the conservation-law analysis, as described in the text. The models are pressure-matched
in the outer region and the three curves in each panel represent constant fractional velocities with f = 1.0 (full), 0.85 (dotted) and 0.7
(short dashed) times the central value. The corresponding energy fluxes are 1.4 × 1037, 1.1 × 1037 and 8.7 × 1036 W. (a) pressure; (b)
density; (c) Mach number; (d) mass flux; (e) entrainment rate, with the estimate for stellar mass loss shown by the long dashed curve;
(f) R = ρc2/4p.
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Figure 14. Curves showing the effects of the uncertainties in the velocity field on the values of the derived flow variables. Seven curves
are overlaid for each of the flow variables shown in Fig. 13, for a fractional velocity f = 0.85 and pressure-matching in the outer region.
The curves result from setting the fiducial velocities and exponent (Fig. 2) in turn to the maxima and minima given in table 7 of Laing
& Bridle (2002), leaving the other parameters at their nominal values. The curves are: H = 3.6 (full); β1 = 0.83 (long dash); β1 = 0.68
(dot – short dash); β0 = 0.45 (dotted); β0 = 0.63 (short dash); βf = 0.25 (dot – long dash) and βf = 0.33 (short dash – long dash). (a)
pressure; (b) density; (c) Mach number; (d) mass flux; (e) entrainment rate; (f) R = ρc2/4p.
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12 R.A. Laing & A.H. Bridle

rate are typically <
∼ 25% from the reference model. We con-

clude that errors in the fitting of the external gas param-
eters are not serious compared with other uncertainties in
the problem.

3.3.3 Solutions which are not pressure-matched in the

outer region

The effect of relaxing the assumption of pressure balance in
the outer region is illustrated in Fig. 16. This shows the same
plots as in Fig. 13 for a constant value of f = 0.85, but a
range of energy fluxes corresponding to the overpressure and
mass-flux conditions (ii), (iii) and (v) given in Section 2.6.
Here, the internal densities are similar, but pressure, Mach
number, mass flux and entrainment rate change significantly.
In each case, the lower limit to the energy flux is set by
the condition that the internal pressure must exceed the
synchrotron minimum pressure. The absolute upper limit is
determined by the condition that the mass flux must always
increase along the jet, although values towards the upper
end of the range require very large over-pressures in the
flaring region, and we have flagged those solutions which
have p > 10pext at any point.

The energy flux ranges of acceptable solutions for the
velocity laws assuming constant fractions of the central
speed are shown in Fig. 17. At a given value of f , the ac-
ceptable range is roughly a factor of 2. The energy flux is,
of course, an increasing function of the velocity fraction.
Again, the relations between f and log Φ are accurately lin-
ear for the limiting cases, and we have plotted the best fits in
Fig. 17 and summarized the results in Table 2. Relaxation of
the pressure balance condition increases the allowed energy
flux range: the minimum value is 4.5 × 1036 W (p = psync;
f = 0.7); the maximum is either 2.3 × 1037 W (overpres-
sure condition; f = 1) or 3.0× 1037 W (mass flux condition;
f = 1).

The solutions that are significantly over-pressured in
the outer region have relatively low entrainment rates which
drop at large distances from the nucleus (Fig. 16e) and which
are therefore closer to the estimated mass input from stars.
At first sight, these could represent free expansion with-
out external entrainment, but they have low Mach numbers
M ≈ 1 (Fig. 16c), so the observed opening angle is not
consistent with this idea.

3.3.4 Synchrotron minimum pressure

Changes in the assumptions made in deriving the syn-
chrotron minimum pressure affect the range of allowed so-
lutions by influencing the lower energy flux bound (Fig. 17
and Table 2). The only change which can reduce psync is to
curtail the energy range of the relativistic particles. So far,
we have assumed a range from γmin = 10 to γmax = 105. If
we increase γmin to 1000, psync decreases by a factor of 0.59
(equation 10). This would reduce the minimum allowed en-
ergy flux from 8.7× 1036 W to 5.8× 1036 W, but in fact the
under-pressure condition in the outer region takes over to set
the minimum energy flux at 6.9× 1036 W. The derived pro-
files are not changed greatly and the pressure-matched so-
lution is unaffected. Even if we take an unrealistically small
range of γ from 103 – 104 (equivalent to a factor of 100 in

Table 2. Expressions giving the energy fluxes for pressure-
matched and limiting solutions as functions of the fraction ve-
locity f : log(Φ/W) = Af + B. The relations are accurate to
≈0.01 rms in logΦ.

Solution description A B

Fixed fractional velocity

Pressure-matched 0.777 36.38
Lower limit (p = psync) 1.080 36.01
Upper limit (p = 10pext in flaring region) 1.293 36.07
Upper limit (monotonically increasing mass flux) 0.853 36.63

Ramped fractional velocity

Pressure-matched 0.335 36.84
Lower limit (p = psync) 0.190 36.91
Upper limit (monotonically increasing mass flux) 1.040 36.45

frequency, which would preclude an extension of the spec-
trum into the X-ray band), the decrease in psync is only by
a factor of 0.42. There is, of course, no reason to suppose
that the energy limits are independent of position.

Other changes (increasing the energy range, decreasing
the filling factor, changing the ratio between field and par-
ticle energy or adding relativistic protons) act to increase
the pressure. This will tend to reduce the range of solutions,
eventually causing a conflict with the pressure-matching and
then the over-pressure conditions. At present, however, the
inferred internal, external and synchrotron minimum pres-
sures are mutually consistent.

3.3.5 Equation of state

The fact that p is only a factor of ≈2 larger than psync in
the outer region is consistent with our initial assumption
that relativistic particles and magnetic field dominate the
internal energy of the jet, and gives a post hoc justification
for the adoption of an ultra-relativistic equation of state.
If there are significant departures from equipartition, then
psync will be significantly higher, strengthening our conclu-
sion. Even if we adopt the most conservative limits on the
particle energy spectrum (Section 3.3.4), relativistic parti-
cles and field must contribute a large fraction of the internal
energy of the jet material.

The density of the entrained material remains much
lower than that of the external medium (η ≈ 10−4 at the end
of the modelled region), justifying the assumption that the
entrained internal energy is negligible compared with that
of the relativistic particles. The ultra-relativistic equation of
state should therefore be an adequate approximation for our
purposes, but will not necessarily remain valid far from the
nucleus.

A full treatment using the equation of state for mixed
relativistic and non-relativistic plasma (Synge 1957; Komis-
sarov 1994) is outside the scope of this paper. We have,
however, tested the sensitivity of our results to the choice
of equation of state by computing the (physically unrealis-
tic) limiting case of a pure non-relativistic plasma. We find
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Figure 15. Curves showing the effects of uncertainties in the external pressure and temperature on the flow variables derived from
the conservation-law analysis. The models are pressure-matched in the outer region and have constant velocity fraction f = 0.85. The
three curves in each panel demonstrate the effects of altering the external density and pressure by the combined 1σ errors in the fitting
procedure from the nominal profiles (Hardcastle et al. 2002). The curves are: nominal (full line), increased pressure (short dashed) and
decreased pressure (dotted). The corresponding energy fluxes are 1.1 × 1037, 1.3 × 1037 and 8.5 × 1036 W. (a) pressure; (b) density; (c)
Mach number; (d) mass flux; (e) entrainment rate, with the estimate for stellar mass loss shown by the long dashed curve; (f) R = ρc2/4p.
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14 R.A. Laing & A.H. Bridle

Figure 16. Curves showing the effects of relaxing the requirement for pressure matching in the outer region. The flow variables are
derived from the conservation-law analysis for a fractional velocity f = 0.85. The three curves in each panel represent the minimum
energy flux allowed by the synchrotron pressure condition (short dashed), the maximum consistent with an instantaneous over-pressure
of a factor of 10 (full) and the upper limit set by the requirement that the mass flux increases monotonically away from the nucleus
(dotted). (a) pressure; (b) density; (c) Mach number; (d) mass flux; (e) entrainment rate, with the estimate for stellar mass loss shown
by the long dashed curve; (f) R = ρc2/4p.

c© 0000 RAS, MNRAS 000, 000–000



Jet deceleration 15

Figure 17. A plot of energy flux against fractional velocity show-
ing the constraints for velocities which are fixed fractions f of the

on-axis value. Solutions are allowed in the unhatched area at the
centre of the diagram and the dashed line represents the pressure-
matched case. The filled circle denotes the reference model of
Section 3.1. The lower hatched area is excluded by the condition
p > psync. Vertical hatching corresponds to jets with p > 10pext
at some point. Jets in the upper, diagonally-hatched region have
mass fluxes which decrease with distance from the nucleus.

that the solutions are similar to those for the ultrarelativis-
tic equation of state. For the reference model, the energy
flux (Φ = 7.2×1036 W) is slightly smaller; the internal pres-
sure is essentially unchanged, and the density, mass flux and
entrainment rate in the outer region are lower by at most
25%. The only major differences occur close to the flaring
point, where the solutions for a non-relativistic equation of
state give densities and entrainment rates lower by factors
of ∼4 and ∼2, respectively.

3.3.6 Momentum flux

We now explore the effect of relaxing the assumption that
Φ = Πc. Unless the velocity is very close to c on parsec
scales, the momentum flux Π is potentially a free param-
eter, depending on the initial value of R, the ratio of rest
mass energy to enthalpy (equation 5). We have searched for
acceptable solutions (according to the criteria (i) – (vi) of
Section 2.6) over a grid of values of Φ and Π for models
with fixed fractional velocities f = 0.7, 0.85 and 1.0. As ex-
pected, there are no solutions with Π significantly less than
Φ/c, but there are solutions with high momentum flux. The
largest range of solutions is found for fixed fractional veloc-
ity and f = 0.7. We show the variation of flow variables with
distance for two extreme cases (minimum and maximum Φ
and Π) in Fig. 18. The high-momentum-flux solutions (e.g.
that represented by the dotted curves in Fig. 18) are very
different from those with Π = Φ/c:

(i) The densities and values of R are high initially and
remain so.

(ii) Consequently, the mass flux and the entrainment rate
are greatly increased, and the maximum in the entrainment
rate in the flaring region is enhanced.

(iii) The jets are supersonic in the flaring region, becom-
ing transonic only in the outer region.

The range of solutions is plotted in Fig. 19 for f = 0.7, 0.85
and 1.0. As expected, the lower bound is just below the line
Φ = Πc. The upper bound is set by the condition that the
outer region is over-pressured by less than a factor of 2. The
positions of the solutions closest to pressure balance in the
outer region are also indicated. In some cases, these have mo-
mentum fluxes significantly in excess of Φ/c, but in no case
is the mean pressure ratio significantly different from that
for the equivalent pressure-matched solution with Π = Φ/c.
We have also found solutions for ramped velocity profiles.
The allowed ranges of Φ and Π overlap the comparable ar-
eas for constant-fraction velocity laws, but are considerably
smaller.

There is therefore a set of allowed solutions where the
jets are much heavier than those we have described previ-
ously, and so require much more entrainment in order to
slow down. They are, however, inconsistent with the decel-
eration from high Lorentz factors on parsec scales required
by Unified Models. In the absence of buoyancy, the ratio of
energy and momentum fluxes for a jet in pressure equilib-
rium (p = pext) can be written:

Φ

Πc
=

[(Γ2 − Γ)R+ Γ2]β

(Γ2 − 1)(1 +R)
(12)

where we have combined equations (1), (2) and (5). Alterna-
tively, if the jet is very over-pressured (p ≫ pext), we have:

Φ

Πc
=

[(Γ2 − Γ)R+ Γ2]β

(Γ2 − 1)(1 +R) + 1/4
(13)

These relations are illustrated in Fig. 20 as plots of Φ/Πc
against R for the cases of pressure equilibrium and extreme
overpressure on parsec scales.

For a given speed, and regardless of the pressure condi-
tion, Φ/Πc must always be larger than the asymptotic value
corresponding to R → ∞:

Φ

Πc
≥

(Γ2 − Γ)β

Γ2 − 1
(14)

For example, Φ/Πc ≥ 0.71 if Γ = 3 and Φ/Πc ≥ 0.82 if
Γ = 5. For light (R ≪ 1) and fast (β → 1) jets, Φ/Πc is
very close to 1. We indicate the asymptotic ratio for Γ = 5
in Fig. 19: it is clear that the majority of high-momentum
solutions are excluded if the Lorentz factors on pc scales are
as high as those required by Unified Models. We also note
that Bicknell & Begelman (1996) argue that R <

∼ 2 on kpc
scales in the M87 jet. We have plotted the flow variables for
a case with Φ = 8.7 × 1036 W and Φ/Πc = 0.82 in Fig. 18.
The jets in this case are only slightly denser than for Φ = Πc
(compare Fig. 13).

There are other problems with the very dense solutions:

(i) They are significantly and persistently over-pressured
in the outer region.

(ii) The enormous increase in entrainment rate in the flar-
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Figure 18. Curves showing the effects of relaxing the condition Φ = Πc. The flow variables were derived from the conservation-law
analysis for a fractional velocity f = 0.7. The three curves in each diagram represent: the maximum momentum and energy fluxes
(dotted lines), an energy flux of 8.7 × 1036 W, as in Fig. 13, but with a momentum flux corresponding to the asymptotic value given by
equation (14) for Γ = 5 (full lines) and the minimum energy and momentum fluxes (short dashed lines). (a) pressure; (b) density; (c)
Mach number; (d) mass flux; (e) entrainment rate, with the estimate for stellar mass loss shown by the long dashed curve; (f) R = ρc2/4p.
Note that the ranges for density, mass flux, Mach number and entrainment rate are larger than those in Figs 13, 14, 15 and 16.
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Figure 19. A plot of momentum flux against energy flux, show-
ing the allowed solution ranges for constant-fraction velocities f

= 0.70 (dashed), 0.85 (full) and 1.0 (dotted). Solutions can be
found inside the closed figures. The three solutions for f = 0.7
plotted in Fig. 18 are also indicated: minimum (Φ,Π) (circle),
asymptotic from equation (14) for Γ = 5 (square) and maximum
(Φ,Π) (triangle). The full line represents Φ = Πc and the dash-
dot line Φ = 0.82Πc, representing the asymptotic ratio for Γ = 5,
as described in the text. Solutions above and to the left of this
line could not have decelerated from Γ = 5 on parsec scales.

ing region (Fig 18e) occurs despite the fact that the jet is
still highly supersonic (M ≈ 5; Fig 18c).

(iii) The ratio R, instead of increasing monotonically
along the jet (as expected), has a maximum in the flaring
region.

We conclude that while we cannot rule out the high-
momentum solutions from our conservation analysis alone,
they would have unphysical properties even on kpc scales
and are inconsistent with deceleration from highly relativis-
tic speeds on pc scales.

4 DISCUSSION

4.1 General

Our analysis shows that the hypothesis that the jets decel-
erate by entrainment and are recollimated by the external
pressure gradient is quantitatively consistent with our model
velocity field for external gas parameters derived from Chan-

dra measurements. The uniqueness of our solution depends
primarily on the assumptions that the jets are in pressure
equilibrium with the external medium in the outer region
and that the momentum flux Π = Φ/c. We have argued
that both assumptions are likely to be correct, but have also
demonstrated the effects of relaxing them. In the remainder
of this Section, we assume that they hold precisely.

Figure 20. Plots of the energy/momentum flux ratio Φ/Πc
against R = ρc2/4p in the absence of buoyancy. Top panel:
over-pressured jet (p ≫ pext); bottom panel: pressure equilibrium
(p = pext). The curves correspond to different velocities: β = 0.9
(full line), 0.95 (dots), 0.99 (short dashes) and 0.999 (dash-dots).

4.2 Comparison with numerical simulations

Several groups have made numerical hydrodynamic or mag-
netohydrodynamic simulations of the effects of internal or
external entrainment on jets.

(i) De Young (1996) modelled the development of turbu-
lent eddies and subsequent entrainment, described as “in-
gestion” followed by “digestion”;

(ii) Bowman et al. (1996) studied the effects of mass
input from stars (considered as a continuous mass source)
on a two-dimensional, relativistic jet;

(iii) Loken et al. (1996) and Loken (1997) modelled ex-
ternal entrainment into a non-relativistic jet using 3D hy-
drodynamical simulations and derived a mass entrainment
rate.

(iv) Rosen et al. (1999) and Rosen & Hardee (2000) in-
vestigated the effects of magnetic fields via 3D, MHD simula-
tions of non-relativistic jets. These showed the non-linear de-
velopment of Kelvin-Helmholtz (KH) instabilities and their
role in external entrainment.
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Although all of these simulations give important insights
into the physics of jet deceleration, none can be compared
directly with our results. Except for the calculations of Bow-
man et al. (1996), which deal specifically with mass input
from stars and exclude external entrainment, all are non-
relativistic. Without exception, they assume that the jets are
initially in pressure equilibrium with the external medium.
This is inconsistent with our inference of a significant over-
pressure in the flaring region. Only Bowman et al. (1996)
include a realistic galactic atmosphere. Finally, the jets in
the highest-resolution three-dimensional simulations (Rosen
& Hardee 2000) are much denser than we infer (η = 0.25,
compared with ≈10−5).

Nevertheless, comparison of Fig. 8 with fig. 2 of Rosen
et al. (1999) shows some similarities: the linear density ini-
tially grows slowly, then increases rapidly through the flar-
ing region and levels off at the beginning of the outer re-
gion. The three phases are interpreted as the linear, non-
linear and saturated stages of the Kelvin-Helmholtz insta-
bilities. There are obvious differences, however: the simula-
tions do not show an abrupt increase in emissivity at the
flaring point, nor do they predict the further rapid increase
in entrainment rate in the outer region.

4.3 The onset of deceleration

A common feature of all our acceptable solutions is that the
jet becomes significantly over-pressured at the start of the
flaring region. Such a localised region can persist in a steady-
state jet (Leahy 1991): it is apparently “unconfined”, but
the fluid passing through it is expanding, and by the time it
has expanded, it is further down the jet, and close to pressure
equilibrium with the surroundings. In fact, the rapid expan-
sion in this region causes the pressure to drop abruptly and
the jet becomes over-expanded, starts to recollimate and
attains pressure equilibrium over roughly a sound crossing
distance.

We have also established that the flaring point in 3C 31
is a discontinuity at which the jet collimation, emissivity
(and perhaps the velocity) change abruptly and we have ar-
gued elsewhere that this is a general property of FR I jets
(Laing et al. 1999). What causes this sudden transition? It
has frequently been suggested that it represents the onset
of turbulence (Bicknell 1984) or (almost equivalently) the
point at which Kelvin-Helmholtz instabilities start to grow
non-linearly (Rosen et al. 1999; Rosen & Hardee 2000).
Our requirement for a significant over-pressure at the flar-
ing point leads us instead to consider the possibility that
the flaring point is associated with a stationary shock sys-
tem. The boundary position is roughly consistent with the
expected location of the reconfinement shock formed when
the internal pressure of a freely-expanding supersonic jet
falls below that of the external medium (Sanders 1983).
Our estimates of psync for the inner jet (Fig. 3) are indeed
consistent with an over-pressure for the first 0.5 kpc (but
note that the external pressure might be underestimated;
Hardcastle et al. 2002). The shock is expected to occur at
a distance

zshock ≈

(

2Φ

3πpextc

)1/2

≈ 0.5 kpc

from the nucleus for a relativistic jet (Komissarov 1994),

in fortuitously good agreement with our results. The flaring
point cannot be the initial reconfinement shock (by defi-
nition, the jet recollimates at that point), but the actual
shock structure is likely to be more complicated. In the cal-
culations of Sanders (1983), a conical incident shock forms
where the jet has become significantly under-pressured. Af-
ter this shock, the internal pressure is still slightly below
the ambient value. The incident shock is reflected off the jet
axis to form a second conical shock, after which the flow is
over-pressured and expanding (Fig. 21). It is possible that
the reflected shock may represent the visible start of the
flaring region. More detailed simulations will be required to
ascertain whether the over-pressure is consistent with the
values inferred earlier (p/pext ≈ 8), although Falle (1987)
suggests that values of p/pext as high as 12.5 are possible in
a non-relativistic jet if the oblique shocks are strong.

4.4 Internal versus external entrainment

Whilst the occurrence of a reconfinement shock provides a
plausible explanation for the over-pressure, it does not by
itself explain the rapid increase in mass input. However:

(i) the increase in expansion rate will naturally lead to a
larger mass injection from stars, which will in turn expand
the jet still further in a runaway process and

(ii) the jet is expected to entrain the external medium
more efficiently when it becomes transonic.

We estimate that internal entrainment from stars is within
a factor of two of that required to slow the jet over the first
kiloparsec of the flaring region (but note that the assump-
tions used to estimate the stellar mass input are extremely
crude, since they assume that the loss rates inside and out-
side a jet are identical and the extent to which mass lost
from stars mixes with the jet is also poorly known).

A number of lines of evidence suggest, however, that ex-
ternal entrainment becomes dominant further out. Firstly,
our observations and kinematic model (Laing & Bridle
2002) show directly that there is an appreciable reduction
in velocity at the edges of the jet, as expected in external
entrainment models. The shape of the transverse velocity
profile in our best fit model changes relatively little down
the jet as it decelerates, so the profile could just be set
close to the nucleus. An error analysis shows, however, that
an evolution from a top-hat velocity profile at the flaring
point to a centrally-peaked profile at larger distances would
also be consistent with the data. Secondly, the very sharp
peak in the entrainment rate at a distance of 3.5 kpc from
the nucleus is difficult to reproduce with stellar mass in-
put alone: a maximum is indeed expected, but it should be
much broader (e.g. Fig 11). Thirdly, the appearance of lo-
cally low polarization at the edges of the jets in the flaring
region (Laing & Bridle 2002) requires the addition of radial
magnetic field components at the edges of this region, so
that the field becomes almost isotropic there. The appear-
ance of such a field component suggests the onset of local
radial motions in this region, consistent with the inflow of
ambient material into the jet. This effect occurs at exactly
the position of the local maximum of the entrainment rate
(e.g. Fig. 11). Finally, the monotonic increase of entrain-
ment rate at large distances is clearly inconsistent with the
fall-off in stellar density. A general feature of the models of
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Figure 21. The shock structure for a reconfining jet, after
Sanders (1983). The top panel shows a sketch with the edge
of the jet (full line), shocks (bold, full lines) and a representative
streamline (dotted line) marked. Note that the vertical scale is ex-
panded for clarity. The bottom panel shows a sketch of internal
(full) and external (dotted) pressures against distance from the
nucleus for the streamline in the upper panel. The flaring point is
set at 1.1 kpc from the nucleus, as for 3C 31, the external pressure
is as used in our models, as is the internal pressure in the flaring
region. All other quantities are notional.

Komissarov (1994) and Bowman et al. (1996), where only
mass-loading from stars is considered, is that the jets are
re-accelerated at distances >1 kpc, becoming significantly
supersonic. The reason is that the entrainment rate, which
is proportional to the stellar density, decreases rapidly. Our
results, which indicate a continuous deceleration, therefore
require additional entrainment, almost independent of the
details of the conservation-law analysis.

We conclude that external entrainment across the jet
boundary from the galactic atmosphere must be important
in decelerating the jets, but that internal entrainment from
stars within the jet may play a significant role in the initial
phases. Indeed, once the area of the jet starts to increase, the
mass input from stars may slow the flow to the point where
entrainment of external material becomes efficient (Bicknell
1994).

4.5 External pressure and density

The presence of a component of hot gas with a small core
radius is essential for the jets to decelerate without disrup-
tion. We have confirmed, for example, that no solutions are
possible with the large-scale component associated with the
NGC383 group alone. The core radius (rc = 1.2 kpc) and
the distance of the flaring point from the nucleus (1.1 kpc)
are almost exactly equal, so that the external pressure gra-
dient is steepest in the flaring region (Fig. 3). We would
expect a significant external pressure gradient to drive the
recollimation of any flaring jet. In one- or two-component
beta-models of the type that we have fit, this inevitably re-
quires that the core radius (or one of the core radii) be close
to the flaring distance.

4.6 Jet composition

4.6.1 Composition at the flaring point

By comparing our estimate of jet density with the number
of radiating particles required to generate the observed syn-
chrotron emissivity, we can constrain the composition of the
jet. With the assumptions used earlier to calculate the syn-
chrotron minimum pressure, the number density of radiating
particles is:

nrad ≈ 60γ−2α
min (15)

with α = 0.55 if the power-law spectrum inferred from syn-
chrotron emission observed between 1.4 and 8.4GHz contin-
ues to lower energy. This estimate uses the on-axis emissivity
inferred for our best-fitting kinematic model, which is close
to the mean of the transverse profile.

The range of densities at the flaring point for pressure-
matched models is ρ ≈ 1.5 – 3.5 ×10−27 kgm−3. This cor-
responds to γmin ≈ 50 – 20 if every radiating electron is
associated with a proton. This is a rough estimate whose
uncertainties include:

(i) the derivation of nrad from the emissivity, which as-
sumes a minimum-pressure condition;

(ii) the form of the spectrum at low energies, where we
cannot observe synchrotron radiation directly;

(iii) the range of densities derived from different models.
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If we drop the assumption of pressure balance in the outer
region, the constraints on γmin are relaxed, but the only
circumstance in which we can avoid a low-energy cut-off
entirely is if the high-momentum-flux solutions are valid.

If, in contrast, the jet consists only of electrons and
positrons at the flaring point, then there would have to be
a significant excess of low-energy particles above the power-
law extrapolation.

We conclude that, although the pressure-matched jets
are very light, we cannot exclude any of the following pos-
sibilities for their composition at the flaring point:

(i) relativistic electrons with a power-law spectrum with
energy index 2α + 1 = 2.1 and minimum Lorentz factor
γmin ≈ 20 – 50, each accompanied by a proton;

(ii) an electron-positron plasma with some admixture of
thermal matter, the latter dominating the density;

(iii) a pure electron-positron plasma with an excess of
particles over the power-law prediction at low energies.

Other intermediate compositions are possible.

4.6.2 Entrainment in the inner jet

Given that stellar mass input must occur in the inner jet, it
is of interest to estimate the mass flux at the flaring point
due to this effect alone. This depends on knowledge of the
luminosity density of the galaxy at small radii, which is not
available directly for NGC383 (HST optical images show
heavy dust obscuration, and infrared observations at suffi-
ciently high resolution are not yet available; Verdoes Kleijn
et al. 1999). Given the stellar luminosity of the galaxy, it
is likely that the light profile is of the “core” type, in which
the surface-brightness profile shows a break from a steep
power-law at large radii (Σ(r) ∝ r−1.65 for NGC383; Owen
& Laing 1989) to a shallow one (Σ(r) ∝ r−a, with 0 <

∼ a
<
∼ 0.3) at small radii (Lauer et al. 1995). This transition
occurs around a break radius rb which is correlated with ab-
solute magnitude and is likely to be 100 pc <

∼ rb <
∼ 1 kpc for

NGC383 (Faber et al. 1997).
Given the uncertainties, we have chosen to estimate two

extreme limiting cases for the mass input into the inner jet.
In the first, we extrapolate the r−1.65 surface brightness pro-
file seen at large radii inwards from the flaring point. In the
second, we assume a flat profile over the whole of the in-
ner jet, normalized at the flaring point (i.e. rb ≈ 1 kpc and
a = 0). The number of particles injected per unit volume
per unit time is a Lorentz invariant, so we can derive the
mass flux at the flaring point by integrating the mass in-
put rate (equation 11) over the volume of the inner jet. The
results are: Ψ ≈ 9.8 × 1019 kg s−1 for Σ(r) ∝ r−1.65 and
Ψ ≈ 1.7× 1019 kg s−1 for a constant surface brightness.

The predicted mass flux is at least commensurate with
that estimated at the flaring point (2.8 – 3.4× 1019 kg s−1 for
the pressure-matched models). It is therefore possible that
essentially all of the mass of the jet comes from stars within
≈1 kpc of the nucleus. If the jet consists almost entirely of
electron-positron plasma on pc scales, it could still pick up
enough mass to be consistent with our estimates on kpc
scales. This argument is not yet conclusive, because of the
many uncertainties in estimating the stellar mass input rate,
but a jet consisting initially of pair plasma would be entirely
compatible with our results.

4.6.3 Jet composition on parsec scales

We expect the amount of thermal material to increase from
parsec scales to the flaring point. We therefore compare our
results with those derived for pc scales using the methods
of Reynolds et al. (1996). These authors used VLBI and
X-ray observations of M87 to argue that its parsec-scale
jet is composed primarily of electron-positron plasma, al-
though they could not exclude an electron-proton jet with
a low-energy cut-off. We have repeated their analysis for
3C 31. An upper limit to the magnetic field strength is de-
rived from the surface-brightness of the self-absorbed core.
For an observing frequency of 4.973 GHz, an angular diam-
eter of <0.56 milliarcsec and a flux density of 0.071 Jy for
the core (Lara et al. 1997), we deduce B<

∼ 2.4 ×10−4 T for
3C31 if θ = 52.4◦. Consideration of the absorption coeffi-
cient at the point where the jet becomes optically thick gives
nradB

2 > 0.02γ−1
minD

−2
max where nrad (in m−3) is the num-

ber density of radiating particles, Dmax = 1/ sin θ = 1.26
is the maximum Doppler factor and B is in T. Conse-
quently, nradB

2 >
∼ 0.0125 for γmin = 1. We use the value

of the kinetic luminosity estimated earlier for the refer-
ence model (Φ = 1.1 × 1037 W) to solve for the particle
number density assuming e−e+ or e−p+ jets. For a bulk
Lorentz factor of 3, as assumed by Reynolds et al. (1996),
we derive nrad ≈ 7.5 × 107 m−3 for a pure e−e+ jet and
nrad ≈ 8.1 × 105 m−3 for an e−p+ jet (note that nrad con-
sistently includes all radiating species).1 Finally, we deduce
a lower limit to the magnetic field, B>

∼ 2.9 × 10−5 T using
the X-ray core flux density at 1 keV from Hardcastle et al.
(2002) as an upper limit to the synchrotron self-Compton
emission. The constraints are plotted in Fig. 22.

The conclusions from this analysis are slightly weaker
than those of Reynolds et al. (1996) for M87. For 3C 31,
an e−p+ jet with γmin = 1 just satisfies the constraints for
a bulk Lorentz factor Γ = 3, whereas it was formally ruled
out for M 87. Our values for the jet composition and γmin

at the flaring point would be consistent with the constraints
shown in Fig 22 even in the absence of any changes along
the jet.

5 SUMMARY AND FURTHER WORK

5.1 Conclusions

5.1.1 Conservation-law solutions

We have, for the first time, estimated the variations
of pressure, density, Mach number and entrainment rate
along an extragalactic jet, using a quasi-one-dimensional
conservation-law approach combined with our kinematic
model and with measurements of the external gas properties
from Chandra. Our solutions are physically self-consistent
and satisfy constraints set by the external and synchrotron
minimum pressures. We conclude that the deceleration law
derived in Laing & Bridle (2002) is fully consistent with
the observed external density and pressure and the conser-
vation of energy, momentum and particles. The presence of

1 In Reynolds et al. (1996)’s discussion of e−p+ jets, the quan-
tity n is used in different places for the number densities of all
radiating particles, and for electrons alone.
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Figure 22. Constraints on the B – nrad plane imposed by syn-
chrotron self-absorption, total kinetic luminosity and synchrotron

self-Compton constraints, as in fig. 1 of Reynolds et al. (1996).
Hatched areas are excluded, as described in the text. The two bold
horizontal lines represent the e−e+ and e−p+ cases for γmin = 1.

a hot-gas component with a small core radius, associated
with the parent galaxy nucleus rather than with the sur-
rounding group, is required for the jet to decelerate without
disruption.

All acceptable solutions have a number of common fea-
tures:

(i) The jets are overpressured by a factor of at least 4
the beginning of the flaring region. Thereafter, the pressure
drops rapidly, approaching and often falling below the ex-
ternal pressure.

(ii) At 3 – 3.5 kpc from the nucleus in the flaring region,
where the expansion rate is largest, there are local minima
in the pressure and density and maxima in the Mach number
and entrainment rate.

(iii) Variations in the outer region are quite smooth: the
density stays roughly constant and the entrainment rate usu-
ally increases monotonically.

(iv) The Mach numbers are always ≈ 1 – 2 in the outer
region (and usually also in the flaring region).

5.1.2 Outer region in pressure equilibrium; Π = Φ/c

It is very likely that the jets are close to pressure equilibrium
in the outer region and that the momentum flux Π = Φ/c.
The principal uncertainty in our analysis is then the as-
sumed velocity law, which effectively integrates over the
transverse distributions of velocity for the relativistic and
thermal plasma as functions of distance from the nucleus.
We have explored a range of possible velocity laws, and con-
clude that the energy flux must be in the range 9× 1036 W
<
∼Φ <

∼ 1.4 × 1037 W. At the flaring point, the key variables
are:

density ρ ≈ 1.5 – 3.5 ×10−27 kgm−3;
pressure p ≈ 1.1 – 1.8 ×10−10 Pa;
pressure ratio p/pext ≈ 6 – 9;
Mach number M ≈ 1 – 2;
mass flux Ψ ≈ 2.8 – 3.4 ×1019 kg s−1;
entrainment rate ≈ 1.0 – 1.3 ×1019 kgkpc−1 s−1;
kinetic/internal energy ratio R ≈ 0.30 – 0.44.

The variations of these quantities along the jets are illus-
trated in Fig. 13. Uncertainties in the kinematic model
(Section 3.3.1) and the external pressure and density (Sec-
tion 3.3.2) lead to similar, but smaller, variations in the de-
rived flow variables.

5.1.3 Outer region not in pressure equilibrium; Π = Φ/c

If the jets are not in pressure equilibrium in the outer re-
gion, then a wider range of energy fluxes is allowed. The
lower limit (4.5 × 1036 W) is set by the condition that the
internal pressure exceeds the synchrotron minimum; the up-
per limit either by the requirement that the mass flux always
increases away from the nucleus or by an over-pressure con-
straint (3.0×1037 W or 2.3×1037 W, respectively). There is a
wider range of solutions (Fig. 16), but they are qualitatively
similar to those for the pressure-matched case.

5.1.4 Synchrotron minimum pressure and the equation of

state

Our conclusions are not seriously affected by changes in the
assumptions used to derive the minimum pressure from the
synchrotron emissivity (Section 3.3.4). Our assumption that
the internal energy of the jets is dominated by relativistic
particles and magnetic field is self-consistent, but we have
also shown that our results are insensitive to changes in the
equation of state (Section 3.3.5).

5.1.5 Π 6= Φ/c

If the momentum flux is allowed to exceed Φ/c by a large
factor, the solutions are much less well constrained (Sec-
tion 3.3.6). The jets can be much denser, and entrain more
rapidly than those having Π = Φ/c (Fig. 18). Although we
cannot rule out these solutions from our data alone, they are
incompatible with the need to decelerate from high Lorentz
factors on parsec scales and require extremely high entrain-
ment rates even where the jet Mach number M ≈ 5. We
suggest that these solutions are highly unlikely.

5.1.6 The deceleration mechanism

The large over-pressure at the beginning of the flaring region
suggests the presence of a stationary shock, perhaps asso-
ciated with reconfinement of the jet. The amount of mass
lost by stars inside the jets and the degree of mixing of
the ejecta are both very uncertain, but our best estimate is
that stellar mass input is within a factor of two of the rate
needed to slow the jet at the beginning of the flaring region.
At larger distances, the required entrainment rate is much
higher than could be supplied by stars and also increases
with distance from the nucleus in a region where the stellar
density falls rapidly. We conclude that another mass source
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(presumably entrainment from the large-scale galactic atmo-
sphere across the boundary layer of the jet) must dominate
at large distances; perhaps everywhere, but that stellar mass
input could still significantly affect the initial deceleration. A
second piece of evidence in favour of entrainment of external
gas across the jet boundary is the (approximate) isotropy of
the magnetic field at the edge of the flaring region (Laing &
Bridle 2002), which is most easily interpreted as the effect
of disordered motions in a turbulent entraining flow.

5.1.7 Jet composition

Our estimate of stellar mass injection within 1 kpc of the
nucleus is most consistent with the hypothesis that the jets
consist primarily of pair plasma on parsec scales and that
most of their mass at the flaring point is in the form of en-
trained thermal plasma. A jet consisting entirely of electron-
positron plasma at the flaring point would require a very
large low-energy excess over a power-law energy spectrum.
Given the uncertainties in our estimates, we cannot rule out
an electron-proton composition; this would require a min-
imum Lorentz factor of γmin ≈ 20 – 50 for the radiating
electrons.

5.2 Further work

5.2.1 Observations

The next step in this work is to carry out kinematic mod-
elling and X-ray observations of other sources and to inves-
tigate how the jet behaviour depends on galaxy properties
and luminosity. Particularly important questions include:

(i) Is flaring and recollimation always associated with a
steep external pressure gradient?

(ii) Is there a difference in the entrainment rate for
sources whose jets propagate entirely within their radio lobes
(presumably much less dense than the external medium)
compared with those, like 3C 31, where the jets appear to
be in direct contact with the hot gas?

(iii) How does the deceleration process depend on jet
power?

(iv) What is the stellar density close to the nucleus? (This
will require infra-red imaging at high spatial resolution).

(v) Is there morphological evidence for the reconfinement
shock structure we have suggested?

(vi) What limits can we set on the energy spectrum of
the relativistic electrons from low-frequency radio and high-
frequency (optical – X-ray) observations?

(vii) Can we refine the constraints on pc-scale jet compo-
sition by higher-resolution VLBI imaging or measurements
of circular polarization (Wardle et al. 1998)?

5.2.2 Theory

Our analysis also poses a number of challenging theoretical
problems:

(i) Is it possible to simulate entrainment into a deceler-
ating, relativistic, magnetized jet with the very low density
contrast we infer and in a realistic galactic atmosphere?

(ii) Is the required over-pressure at the flaring point con-
sistent with the shock structure in a reconfining jet?

(iii) What is the viscosity mechanism? How is momentum
transported across the jet? How can we constrain this using
estimates of the velocity profile?

(iv) Are turbulent velocities significant? What are their
effects on energy and momentum transport and magnetic
fields?

(v) Is an ultra-relativistic equation of state an adequate
approximation everywhere?

(vi) How is the entrained material mixed and heated?
(vii) Can better estimates be made of the mass input rate

from stars inside a jet?
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