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CHAP'T'ER Ct~E : World-Mcdels 

• 
1.1 Basic Observations and Assumptions 

Modern 

assumptions 

1) The 

2) The 

ccsmology rests on a small number of fundamental observations and 

The observations are: 

sky is dark at night. 
velocities of recession of the galaxies increase with increasing 

distance of the galaxy. 

3) The distribution of galaxies is statistically isotropic on linear 

scales greater than about 50 Mpc. 

4) The Universe appears to be filled with an almost-isotropic bath of 

radiation whose spectrum is close to that of a black-body at a temperature 

T-2.7 K. 

The assumptions are: 

a) Not only are we not privileged cb servers by result of any special 

location in space (the Copernican Principle), but we are also typical 

observers, whose data on the large-scale appearance of the Universe are at any 

time statistically the same as those of any other observer who moves with the 

mean velocity of the galaxy population in his vicinity. This more sweeping 

assumption is called the Cosmological Principle. 

b) The known laws of physics, particularly those of General Relativity, 

apply throughout the Universe in all places and at all times. 

1.1.1 The dark night sky 

If a Un iverse were uniformly populated with n sources of radiation per 

unit volume, of average luminosity L, then the number dN of sources in a 

spherical shell, radius r, thickness dr, around an observer would be given by: 

dy = n.4irr 2 .s(r).dr 

where s(r) is a factor which specifies the departure of geometry from 

Euclidean. The brightness dB at the centre of the shell due to these sources 

would be: 

dB = dN. L/41rr2 . s (r ) = nLir 

As this is independent of the radius of the shell, the total observed 
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brightness B due to all the sources in shells with radii from 0 to R is 
i'-R-

B = 
j 
dB = nLR. 

r=0 
This diverges with R, i.e. the brightness of the sky in a uniform, 

unbounded Universe would itself be unbounded in this approximation. This 

conflicts violently with the observation that the night sky is dark. 

If we allow for the fact that nearby sources would screen more distant 

ones, the expected brightness becomes that of an enclosure whose walls are the 

surfaces of the sources - i.e, the expected brightness is not infinite, but at 

visible wavelengths, for example, wt7uld be that of a typical stellar 

photosphere; the night sky should be as bright as the Sun, still in gross 

conflict with observation. If we postulate that the space between the sources 

is filled with absorbing matter which causes the brightness from distant 

sources to fall off faster than 1/r2s(r) then we can limit the expected 

brightness only if the Universe is sufficiently young that the absorbers have 

not yet cane to equilibrium with the radiation from the sources, but remain at 

a temperature much less than that of a stellar photosphere (or if the 

'absorbers' are in a sense 'radiation sinks' which never come to radiative 

equilibrium) . 

The postulate of a young Universe, needed for a successful 'absorber' 

explanation of the dark night sky, would however be sufficient by itself to 

remove the problem. If the Universe is of age T, then the maximum value of R 

fran which we receive radiation cannot exceed max T, and B is therefore 

small if T is sufficiently small. Alternatively, we might postulate that R is 

limited by a physical boundary to the Universe - that for F'JRm there are no 

more sources; or, less dramatically, that n or L is a function of r which falls 

off something like exp(--r/h) where h is a characteristic scale height. In this 

case B would be limited to nLh. 

The darkness of the night sky thus tells us either that a) the Universe is 

young, or b) the Universe is finite or c) the Universe has a radiation sink 

which does not come to thermodynamic equilibrium, as would a piece of dark 

absorbing matter, or d) that the mean properties of the Universe are changing 

with time so that L is greatest for the nearest sources (hose light takes the 

shortest time to reach us). 

1.1.2 The recession of the galaxies 

'Rubble's Law' is now so famous that it is easy to forget that he was not 
the first astronomer to obtain galaxy spectra or to correlate them with 
distance. By 1925 V.M.S lipher of the Lowell Observatory had determined 40 of 
the 45 known radial velocities of what were then called 'white spiral nebulae' 
fran the Doppler shifts of the absorption lines in their spectra. As early as 
1918, C.Wirtz attempted to use galaxy spectra to determine the motion of the 
Sun with respect to the reference frame of the nebulae, but abandoned this 
attempt because the velocities correlated less with direction in the sky than 
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with the diameters of the galaxies. He noted that the radial velocity was 

greater the smaller the galaxy's angular diameter an6 that there was an excess 

of pc itive (recessional) radial velocities. In 1925 Lundmark proposed a 

velocity-distance law in the form 

V = 513 + 10.365r - 0.047r2 km/s 

where r was the galaxy's distance in units of M31 distances (this law describes 

a max imurn V = 2250 km/s at 110 bi31 distances) . 

In 1929 Hubble (Publications of the National Academy of Sciences, 15, 

158 (1929)) establisned 'a roughly linear relation between velocities and 

distance among nebulae for which velocities have previously been established 

(mostly by Slipher) .,. (which) appears to daninate the distribution of 

velocities. in the immediately preceding paper, the cosmologist H.P.Robertson 

points out that a linear velocity-distance reltion is to tae expected in same 

classes of world-rrodel derived frail General Relativity. 

Hubble and M.K.Humason, working at Mount Wilson, determined the velocity-

distance constant H (v = Ft) to be 500 krr/s/^'ipc. By 1930 iapley's work on 

Cepheid variables had raised this to 558 km/s/Npc. ;aade's discovery of errors 

in the Cepheid calibration reduced this to 180 knVs/Mpc. In the 1950s, Sandage 

at Palanar showed that what Hubble had identified as the 'brightest stars' in 

his more distant galaxies were in fact HII regions; the consequent 

recalibration reduced H to 75 krn/s/ pc. By 1970, a variety of different 

distance indicators for the more distant galaxies then available yielded values 
for H between 45 and 150 krn/s/c~pc, but many 'clustered' around 100 knVs/Mpc, 

This value has been adopted in much astronomical work as a working assumption. 

In 1975, Sandage and Tammann published results of an extensive study from which 
they obtained values of H near 50 krr}/s/Mpc. 

Although 'best estimates' of H have decreased by a factor of more than ten 

in the last fifty years, and there is still controversy over the value of H in 
the range 50-100 km/s/Mpc (which we will review later), it is important to 

realise that all the uncertainty is in the scale of d. The local linearity 

of the v-d relation is now well established, over a range of distances 

approaching 100 times that in Hubble's (Slipher's) original data. The galaxies 
are definitely engaged in a systematic motion of mutual recession, whose 
linearity with distance negates any notion that our Galaxy has special status -
linear expansions appear centred on a co-noving c,server wherever he is located 
in them. Th is beautiful result is the backoone of modern cosmology. 

1,1.3 The isotropy of the galaxy distribution 

Sane of the more conspicuous galaxies, notably M31 and M33, are much 
closer to the Milky y than are other relatively nearby galaxies. The 4iiky 



(nay is situated near one edge of a slightly flattened loose 
cluster of galaxies 

about 600 kpc across called the Local Group. About 20 Mpc away in the 

direction of the constellation Virgo is a cluster of thousands of galaxies, 
of 

which the Local Group may be an outlying satellite cluster. The distribution 

of galaxies on the sky out to distances of oraer 50 Moc is strongly influenced 

by such clustering, and by possible super-clustering, but on larger scales the 

distributicn cf galaxies appears statistically isotropic, once allowance is 

made for the effects of interstellar obscuration in the Milky Way. The 

statistics of galaxy counts to given levels of faintness in different 

directions cannot yet be said to demand large-scale isotropy in the 

Universe, but they are certainly compatible with it, as are the statistics 

of counts of clusters of galaxies, and of the very luminous and distant 

radio-galaxies and quasars. As we shall see in some detail later, the 

microwave background ('relic') radiation is also highly isotropic. Various 

avenues of astronomical data thus agree that the large-scale Universe is 

probably isotropic. 

1.1.4 The microwave black-body background radiation 

After accounting for all local and discrete astronomical sources of 

microwave radiation, there is a residual smooth 'background' of radiation whose 

spectrum is that of a black body at a temperature near 2.7 K. 'This remarkable 

fact, discovered in 1964 by A.Penzias and R.Ftilson of Bell Labs in Holmdel, New 

Jersey, earned its discoverers the Nobel Prize for Physics in 1978 on the 

grounds of its cosnolcgical importance. It shows that, in all directions 

through our present Universe, we encounter radiation that nas been equilibrated 

with matter at the same apparent temperature - i.e. that the past thermal 

history of matter has a canon feature in all directions. It does not by 

itself tell us the state of the matter, when or at what local (proper) 

temperature the radiation came to equilibrium, but it does strongly favour 

those classes of world-noel which impose a common thermal history on all 

matter on the large scales. The exploding 'big-bang' models are of this kind. 
As we shall see later in Chapter Four, the presence of the microwave radiation 

background does not prove that 'big-bang' models are correct, but it is 

readily consistent with them., 

1.1.5 The cosfclogical assumptions 

The two basic assumptions referred to earlier both embody matters of 
philosophy rather than matters of science that are open to experimental 
verification. Since the Copernican Revolution we have realised that the Earth 
is not spatially privileged in the Solar System, nor is the Solar System in the 
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Milky Way galaxy, or the Milky Way in the Local Group or the Virgo 

Supercluster. This lack of privilege does not however justify the assumption 

that all cosmologically-relevant observations that we make are statistically 

typical of those of hypothetical observers who move with the velocities of the 

Hubble flow. We refer to such hypothetical co-moving observers as Fundamental 

Observers (FOs); the Cosmological Principle asserts that there should be an 

infinite set of FOs, whose data on the large-scale properties of the Universe 

are statistically identical at any given time. 

There are in fact some observations, to be described later, which hint 

that the motion of our galaxy relative to the local Hubble flow is not quite 

negligible. We really have no alternative to assumption (a) however, as we 

have only one Universe to observe and one place and time to observe it from. 

We can only hope that if we are not strictly ideal FOs, then the deviations of 

our data from those of F'Q5 are merely random perturbations that will not lead 

us to serious misinterpretations of the large-scale order around us. 

Assunction (b) - the universality of our physics - has obvious dangers. 

We have established our detailed 'laws of physics' from experiments whose 

space-time limits are usually only a tiny fraction of the space-time domain we 

wish to model. The alternatives to assumption (b) are paralysis and 

speculation, however. The best we can do is to attempt to interpret the 

largest-scale phenomena using known physics until forced by the data to resign 

this effort in favour of new ad hoc physical constructs. At the same time, 

we must watch for ways in which our conclusions might be invalidated by effects 

that we cannot gauge locally - e.g. weak but long-range forces other than 

gravity, or the existence of subatomic particles that we have not yet 

encountered in terrestrial experiments. 

1.1.6 Isotropy and homogeneity 

In its fullest statement, the Cosmological Principle asserts that there 
can be an infinite set of possible FOs, all of whom would observe a 

statistically isotropic and homogeneous Universe. Isotropy means that the 

Universe will appear statistically the same to any FO whichever direction in 
his sky he looks, while homogeneity means that every FO will construct the 
same time-history of the [diverse. Homogeneity implies the existence of a 
Universal scale of cosmic time, on which every observer could characterise 
large-scale evolution using the same functions f(t) to describe the same 
universal variables (e.g. the mean number density of galaxies). All Fns could 
in principle synchronise their clocks by sequencing distinguishable large-scale 
events in the Universe to a cannon time scale. 
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1.2 Cosmic Kinematics and Dynamics 

1.2.1 Neo-Newtonian model-making 

Cosmological models are properly developed within the framework of General 

Relativity (GR), which describes the observable phenomena in terms of particles 

with fixed co-ordinates in an expanding curved space. Milne and McCrae pointed 

out in two classic papers (Quarterly Journal of Mathematics, 5, 64 and 73 

(1934)) that it is always open to the observer to choose to describe the 

cbservable phenomena using static Euclidean space. A description in this 

framework must use concepts of force and action at a distance that are avoided 

in GR, but such a description is not a priori less valid. GR has allowed 

the prediction of phenomena which are difficult to incorporate in a 

non-relativistic formulation, but it turns out that many of the observable 

cosmological phenomena are not 'relativistic' in this sense. Indeed, Milne and 

McCYae demonstrated that the defining equation of the GR world-models, the 

Friedmann-Lemaitre Equation, can be obtained from a standpoint in which space 

is Euclidean, time and gravitation are Newtonian, and the equivalences between 

observers postulated by GR are paralleled by the equivalence of the FOs 

postulated by the Cosmological Principle. In particular, the Newtonian 

'absolute time' is paralleled even in the relativistic models by the 'cosmic 

time' implied by the postulate of homogeneity. 

The merit of the neo-Newtonian approach is that it shows the essential 

features of the main classes of cosmological world-model without burying the 

underlying physics in the mathematical complexities of tensor calculus. Its 

ability to provide the basic Friedmann-Lemaitre Equation (albeit with somewhat 

different intepretation of the parameters) stems fran the fact that the 

Cosmological Principle constrains even the GR models to be of a kind where the 

global behaviour is seen in any limited region; and in sufficiently limited 

regions (over which the relative velocities in the Hubble flow are small) the 
GR ma3els must asymptotically be the same as the Newtonian. 

1.2.2 Kinematics of the models 

The universe is to be pictured as a 'cosmic fluid' whose properties 
describe the spatially-averaged properties of the real Universe of galaxies, 
stars, etc. Each particle of the fluid has a velocity v(r); observers 
whose velocities are those of the fluid at their 'position r (i.e, observers 
who could be regarded as 'riding' the particles) are the FCC. 

• 
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Consider one such observer, 0. He constructs a co-ordinate system with 

himself as origin, and observes a particle P in the fluid, assigning it 

position vector r. He determines its velocity P/O relative to 

himself at time t: v(r,t). He also determines the density and pressure 

of the fluid at P. Over a sample of points P, he can determine the functional 

forms for 

vP/O = v(r,t) = 5(r,t) and pp = p(r,t) 

A second observer, 0', makes the same observations of the same point P. 

This second observer finds v' (r' ,t) , S' ( r', t) and p' (r', t) . 
The Cosmological Principle demands that the primed quantities are the same 

functions of their arguments as the unprimed quantities. 

Naa let the displacement 00' be the arbitrary vector a in 0's system. 

Ten we can write 

V0/0 i = V(a) and vp/0I =  - 0'/0 

acxl r' =r - a 

Fran this it follows that 

P/0' = v'(L') 

= v'(r - a) also = v(r) - v(a) 

The Cosmological Principle requires that 

v' ( r - a) = v (r - a ) , so that 

v (r - a) must = v (r) - v (a) 

This constraint can be satisfied only if _v(r,t) = F(t)r where 
F( t) is a tensor whose components do not depend on r. However, if the 
model is to be isotropic, F (t) nnist in fact be a scalar f(t).  By similar 
arguments it follows that the density and pressure p in the fluid cannot be 
functions of r at a given t. 

Ncw concentrate on the expression 

v = f (t)r 

This is the equation of motion of a particle in the fluid (or of an FO) . 

• 



It can be solved as 

(' t: 

r(t) = r0 exp ` f (t)dt = r0 (R(t)/R(t0) ), 

t oJ 

where R(t) is a 'scale factor' for the Universe at time t, and t0 is an 

agreed-cn 'scaling time' at which all co-ordinates are assigned. Clearly R(t) 

and f(t)  are related as 

(1.2) f (t) = R(t)/R(t) 

Equation (1.1) contains the first important prcper ty of all isotropic, 

hanogeneous world-models: the only motions consistent with our postulates are 

those consisting of a uniform scaling of all separations by a scale factor 

R(t), whose logarithmic time derivative specifies the velocity-coordinate

relationship (this is not quite the same as the observed velocity-distance 

relation, as we will see later). The form of the function R(t) will be 

different for different models, and our next task is to find what forms R(t) 
are consistent with known forces, i.e. to find the allowed dynamics of the 
models. 

1.2.3 Classical dynamics of the models 

If we fix attention on an individual particle in the fluid, the time 
derivative D/Dt of any parameter q at the particle is given by: 

Dq/Dt = aq/at + (v.V ) q 

where a/fit is the Eulerian time derivative (at a fixed position in space) and 
v is the particle velocity. With this notation, the Equation of Continuity 
which expresses mass-conservation in the fluid is 

(1.3) D~/Dt =

Expanding the left-hand side and substituting from (1.1) in the right-hand 
side, we have 

as/at +(v.V)s = -,g .3f, i.e. 

= -3 dR/R (using (1.2) ) 

This integrates to 

• 
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(1.4) ~(t) = oR3 (to) /13(t)\ cc s5 br1S4.rootic n. 

where 40 is the value of at the 'scaling time' to. Note that this 

relation will not hold in world-rrodels where mass conservation is violated. 

The dynamics of the model can then be obtained using Euler's momentum 

equation for the fluid: 

Dv/Dt + (1/f)Vp - F = 0 

where F is the self -force per unit mass in the fluid. We use (1.1) to 

evaluate the first term: 

Dv/Dt = ?v/at + (v .y) 

= ft + f 2(r a/ar)r 

= (f + f 2) r 

+ (fl2)'3• 4-

=O 

YE = - 4-n G 

As p is not a function of r (from the constraints imposed by the 
Cosmological Principle), pp = 0. 

The ccmputation of F in an infinite system cannot be made in Newtonian 
mechanics. We can either suppose the Universe to be finite (but very large), 
or we can note that Risson's Equation gives 

p.F = -4rrG~ 

in the Newtonian theory, so that taking the divergence of the Euler equation 
gives us 

(f + f 2) (Q. r) + 41rG = 0 

Substituting f = R/R from (1.2) and using V . r = 3, we have 

(R/R - R2/R2 + R2/R2 ) = - 4TrG4/3, i.e. 

(1.5) R = - 4irGgR/3 

Substituting for 3 in (1.5) using (1.4) : 

R = - 4irG40R3(t0)/3R2 
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which can be written R = - GMO/R2

(1.6) MO = 4irg0R3 ( t 0) /3 

where 

is the mass inside a sphere whose radius is the 'scaling length' R(t0) at the 

scaling time t 0 . The first integral over time (after multiplying both sides 

by 2R) is 

R2 = 2GM0/R + constant 

With intuition born of hindsight, we will call the constant of integration 

-kc2, to obtain finally: 

Equation (1.7) is  identical to the corresporrling equation of General 

Reativity, with the 'cosmological constant' set equal to zero. 

1.2.4 The Cosmological Constant R 

When Einstein began his work on cosmology, it was thought necessary to 
provide a static model along the lines of the Herschel/Kapteyn Universe 
(which was based on observations only of our local galactic neighbourhood, 
before Shapley's work on the globular clusters). It is clear from equations 
(1.5) and (1.7) that in a static universe, where R and R = 0, there can be no 
matter (~o must = 0). It was therefore impossible to provide a model 
containing any matter, if it had to be static. This difficulty of Einstein's 
is in no way peculiar to GR - if gravity is the only long-range force, then the 
fact that it is attractive means that all static Universes will collapse unless 
the masses are infinitely remote from one another. If it had been known at 
this stage (1916) that the 'white nebulae' were galaxies outside our own, and 
that they were receding from one another, the 'cosmological constant' might 
never have been introduced. 

Einstein tried to rescue the situation by introducing an additional term 
which permitted a static Universe to contain matter. The new term appears in 
GR as a constant of integration which specifies the curvature of empty space~trn G~ 
relativity theory does not require this term to be zero, and it should in 
principle be left for experiment to determine. In the neo-Newtonian framework 
we can perform the equivalent of Einstein's adjustment by introducing a 'cosmic 
repulsive force' which can counteract gravitation to permit a static model. If 
we adjust Roisson's Equation to read 

Q. F = -4iiGs + A 

we are implying a repulsive force F = Ar/3. Dimensionally the new 

GOn°.~nt YActlUrf~ 

grav:CorCan saw L 
A 
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constant is T-2. If /\ is small, the repulsion will be negligible over 

laboratory distances the modification thus permits local agreement with 

experiment while modifying the behaviour of the large-scale Universe very 

substantially. It is an example of a possible lack of canprehensiveness in our 

local physics of the kind discussed in Section 1.1.5. It must be remembered 

that the form of the new term is not as arbitrary in GR as it appears to be in 

the adjusted Foisson's equation above. 

With the new term in place, our earlier equations (1.5) and (1.7) become: 

(1.8) R = (AR3/ 3 - C~ti10 ) /R2 and 

(1.9) R2 = 2GM0/R - kc2 + AR2/ 3 l nte, 

In the CR models, equation (1.9) was first given in 1922 by Alexandre 
Friedmann, who appears to have been the first to recognise that world models 

whose spatial properties depend only on the time were compatible with GR. 

Friedmann was a Russian whose pioneering work in this field was largely ignored 
in the West, and was originally sharply criticised by Einstein. The French 

Abbe Georges Lemaitre gave equation (1.9) for a model in which 'the radius of 
the Universe increases without limit' in a paper published in 1928. In modern 

times, it has become known as the Friedmann-Lemaitre Equation. 

Given a pair of values for A and k, the Friedmann-Lemaitre equation 
specifies a form for R(t) which in turn governs the behaviour of observable 
quantities in the world-model. We will explore the allowed forms of R(t) and 
then examine ways in which we can decide which (if any of them) corresponds to 
the actual Universe. Before carrying out this analysis, however, it is useful 
to note the meaning of the terms in the Friedmann-Lemaitre equation in the 
context of the GR models. 

1.2.5 The meaning of R and k in models based on General Relativity 

In a General Relativistic (GR) formulation, the aggregate of all events 

constitutes the points of a Riemannian 4-space ds2 = g~~ dx1 dx" and the 
constant k specifies the curvature of the spatial part of the metric. 

Robertson and Walker showed in 1934 that the postulates of isotropy and 
homogeneity in the Cosmological Principle require the gµ~ to give a metric 
which can be written: 

(1.10) ds2 = c2dt2 - R2 (t) dh2/(l_kv2) + 2 (d92 + sin2edc~2)} 

where , ~, and are spherical polar event coordinates and t is the cosmic 
time. The 3-spaces defined by dt=0 expand as R(t) and their curvature depends 
on the value of k, which in this formulation must be +1, 0 or -1. Obviously 

Cu(joru~€. o~ S c€t me is U►r)Arine c f' 2 -see. d&

_ ds~ , CZdkZ - ¶ () d /( t -k r ) 

c .a - c~►~voXu►e %((E) = - R ~R. - - 4,rg(t)G/3 /~,/3 
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k=0 gives the classical flat Euclidean space, in which the proper (dt=O) 

distance between ttx FOs atQ=0 and G=GO is r(t) = R(t)Q"O. 

The case k=+1 gives a closed space in which the coordinate 0 must be in 

the range 0<0 <l. The proper distance between two FOs at C =0 and o=aO is, 

fran (1.10) with dt=0 

r cro 
r(t) = R(t) J d/j (1-~2) = R(t) sin 1 GO

0 
This is ambiguous to within 2nnR(t), so we may regard R(t) as the radius of 

a closed Universe in this model. 

The case k=--1 gives an open space in which can run from zero to 

infinity, but whose geometry is non-Euclidean (Bolyai-Lobatchewski space). In 

this case, the proper distance between observers at coordinates Q=0 and C(=VO

is: 

r ( t) = R(t) sink-1c 

It will be onvenient to write the above three expressions for the proper 

distance in~general form 

(1.11) r(t) = R(t)Sk (GO ) , where 

sin-1Q" (k=+l) 

Sk (~) = Q' (R=0) 
sinh-l U (k=-1) 

Note that the coordinates U', sand $ are fixed for any FO for all time 
(they are described as co-noving coordinates). They specify the relative 

configuration of the FOs which is maintained throughout the development of the 

model. The evolution of the model in time cones entirely from the variatiaz in 

the scale factor R(t). Einstein's field equations applied to the 

Robertson-Walker metric (1.10) yield the Friedmann-Lemaitre equation. 

1.2.6 The meaning of k in neo-Newtonian models 

Evidently the role of R(t) in the GR models is quite similar to its role 

in the nec--Newtonian models of Section 1.2.3. k kas nothing to do with space 

geanetry in the Newtonian models, however, as these models are fundamentally 

cast in Euclidean space. To see the significance of k in the Newtonian models, 

consider the case A = 0. If we divide equation (1.7) by 2R2 we obtain 

(1.12) R2/ 2R2 = 4TrGQ/3 - kc2/2R2 
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Nag consider an observer at r=O examining the motion of matter in a sphere 

of radius r around himself. A particle of mass m on the outside of the sphere 

moves with velocity (1.1) 

v = f(t)r 

relative to the observer. He will therefore gauge its kinetic energy to be 

T = mv2/2 = mf 2(t)r2/2 = mr2R2(t)/2R2(t) 

where we have used equation (1.2) to substitute for f(t). The mass M within 

the sphere is 

M = 4nr3'/3 

and the gravitational potential energy of the mass m (as judged by this 

cbserver) will be 

V = -G'lm/r = -4nGSr2n1/3 

We can therefore rewrite the modified Friedmann-Lemaitre equation (1.12) 

in the form 

T + V = kc2r2m/2R2

It follows that if k is positive, an cbserver considers the mass 

points around him to have (T+V) negative, i.e. to be gravitationally bound; 

k negative corresponds to the masses around a given observer having more than 

the 'local escape velocity' and k=0 corresponds to the transition condition 

where T+V = 0 and the model just comes to rest with the masses infinitely 

separated. Thus k in the Newtonian models is a measure of the local 

gravitational binding, while in the GR models it specifies the type of 

space-geanetry. These interpretations are not equivalent, and the similarity 

between the neo-Newtonian and GR world-models is limited by the fact that all 
Newtonian models are cast in k =0 space in the terms of the GR formalism. 

It turns out haaever that all presently measurable properties of the 

Universe depend much more on R(t) than on spatial curvature explicitly, so the 

Newtonian models can provide a useful framework for the visualisation of 

ct servational problems in cosmology. 
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1.3 Classification of World-Models 

1.3.1 The static (Einstein) model 

Although it is now clearly at variance with the data on the large--scale 

Universe, the static Einstein model is still of interest as it defines a 

critical value of the A -term. We obtain the Einstein model by putting R = 0 

in equation (1.8) and R = 0 in equation (1.9), noting that R(t) = R(t0) and 

S = 40 for this static model. A and R must then satisfy 

(1.13) A = 4nG f 
and R = c~( ( k/4irG~) 

Note that we must have k positive for this R to be physically meaningful, which 

in the GR models means that k must be +1 (closed space). We can always choose 

the scaling factor in the Newtcriian version of the model so that k=+1, to 

obtain correspondence with the GR model. 

The values of A and R specified by equation (1.13) depend on the density 
of the model, and appear as critical parameters in score evolving models (see 
Sections 1.3.6 and 1.3.9 below). We will refer to condition (1.13) as defining 
critical values A = ~E and R = RE. 

1.3.2 The model k ), A=0 (Einstein-de Sitter model) 

For this case the Friedmann-Lemaitre equation reduces to 

R2 = 2GNO/R 

dR/dt = 'I (2G~10 /R ) 

and we can find a natural zero of cosmic time when R(t) = 0, in which case 
R,   t 

f SIR d R =  / (2GM0 ) dt 
o p 

2R3/ 2 / 3 = t~((2GN0) , i.e. 

R(t) = (2GM0)1/ 3 (3t/2) 2/3 

R(t) = Bt2/ 3, where B = (3/2)2/ 3. (≥240) 1/3 

This model 'explodes' at t=0 with finite velocity, then slows to a stop at 
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infinite size. It is the cosmolo3ical equivalent of the parabolic-velocity 
condition in tcao--body orbits. 

1.3.3 The model k>0, A (Friedmann--Einstein model) 

From equation (1.7), this model has R less than the corresponding value in 

the Einstein-de Sitter model for all R>0. It therefore 'explodes' at lower 

velocity than the Einstein-de Sitter model and its path in the R-t plane lies 

entirely under that of the Einstein-de Sitter. A maximum value of R is 

reached when f=o, i.e. when 

R = 2GM0/kc2

and the scale can always be chosen so that k=+1. The form of R(t) can be 

written in parametric form 

R = (A/2) (1- cosB) , t = (A/2) (6-- sine) 

which is the equation of a cycloid. Whether the cycloidal repeat of R(t) 

corresponds to physical reality will depend on the presumed physics of the 

Universe near R(t) = 0. The model is widely known as the 'oscillating 

Universe'. 

1.3.4 The model k<0,A=O (Hyperbolic model) 

For this model, R is everywhere greater than in the Einstein-de Sitter, 

and the ncdel escapes to infinite R with R>0 in finite time. At very large R, 
equation (1.7) becomes 

R2 = -kc2 (positive), so that 

R(t)  -~ ct~/ (-k ) 

This is also an 'exploding' model. 

1.3.5 The deceleration parameter q 

We have now seen that ALL MODELS WITH A = 0 IMPLY A PAST PATEDLOGICAL 
STATE OF THE UNIVERSE IN WHICH R(t)--0  and S oo . The models differ in their 

rate of deceleration at given R, and can be characterised by the dimensionless 

deceleration parameter 

• 
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(1.14) q = -RR/122 = I ~(2 - kc K/GM0) 

= 4TrG'R2 /(8lTGQR2 - 3kc2) 

in the A = 0 models. Hence q = 0.5 at all R (all t) in the Einstein--de Sitter 

model, <0.5 in the hyperbolic models and >0.5 in the Friedmann-Einstein 

oscillating models. Evidently a reliable observation of the present value of q 

would establish the type of model in which we live, if we knew thatll=0. 

1.3.6 Models with k>0,A >A (Lemaitre models) 

All models with non-zero A are best understood by considering the 
behaviour of f 2 in a N-R plane. Consider the locus of all points with R2=0 
in this plane when k=+1. The Friedmann-Lemaitre equation is then 

c2 = 2GMo(R + A /3 

For small values of R, A must be large and negative, while for large values of 

R, A must be near zero but positive. It follows that the locus of R2=0 must 

begin at the lower left of the A-R plane, cross the A-axis at some R, pass 
through a maximum value of A, and then asymptotically approach the R-axis fran 
above (see the diagram which follows) 

A 

i 

~=o 

k>o 

R. 

Frail the above equation, it can be seen that the axis-crossing at A=0 
occurs for R=3M0/c2 and that the peak on the locus occurs at the value A= 

given by condition (1.13) . To find the form of the models using this 
diagram, we note that the region of the diagram which corresponds to physical 
reality is the region where ñ2>0, i.e. the region above the R2=0 locus, 
and that a model will have a given starting value of R and f, and a fixed value 
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of A. The loci of the models are thus horizontal lines in the diagram. 

The Lemaitre models all lie above the peak of the f2=0 locus. They 

explode from R=0, and so move to the right in the A-R plane away fran their 
starting-point (e.g. point L). In so doing, R first decreases, reaching a 
minimum at the closest approach at same R near to but lower than the value of R 

at the peak of the R2=0 locus. After this f again increases. The general 

form of these models is therefore a continuously expanding R(t) which first 

decelerates under gravity and then accelerates under the A-repulsion. 
A particularly interesting class of Lemaitre models is the set with A 

only slightly greater than AE. For these models, the minimum value of R is 

very close to zero, so the models spend a very long period of time in an 

almost-static 'coasting' phase (see below). 

R A'AE l e 4c tre. mwdeJS 

t 
1.3.7 Models with k>0, 0<A< 

These are of two kinds. Models starting with small R are constrained 
to remain on the left of the R2=0 curve (remember that the region under the 
curve is unphysical and cannot be entered by any model). These models explode, 
decelerate, stop at the value of R where the horizontal line representing them 
in the N-R plane intersects the locus of R2=0, and then fall back 
symmetrically. They are therefore of same form as the Friedmann-Einstein 
models with Ate. 

A new class of model starts at large R, to the right of the R2=0 
locus, and contracts with decreasing velocity; these models step contracting at 
finite R (again where their horizontal line reaches the R2=0 locus), and then 
re-expand symmetrically. The form of R(t) resembles a catenary, and they are 
variously known as 'catenary' or 'bounce' models. THEY ARE THE FIRST 
NON-EXPLCSIVE MODELS PE HAVE YET ENCOUNTERED. 
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1.3.8 Models with k>0, A<0 

Negative 7 introduces a long-range attractive force which grows with 

distance, and all models of this kind resemble the bound Friedmann--Einstein 

form. They start at small R below the A-axis and to the left of the R2=0 

locus in the A- R plane, decelerate and stop at a loo value of R, then fall back 

on themselves. 

1.3.9 Mcdels with k>0, A= 

• 

• 

Models beginning at small R will expand at a decreasing rate and 

eventually stop at the peak of the R2=0 locus; at this point they become a 
static Einstein model. Models beginning at large R will contract at a 

decreasing rate and step as a static Einstein model. 

The Einstein model is itself unstable to perturbations. It is represented 

by the point at the peak of the R2=0 locus. Any displacement leads either to 

collapse under gravity or to inflation under the A--r epuls ion . The behaviour of 

the model after perturbation is exactly that of the two preceding models, with 
the time sense reversed. 

An unique model in this class is the one which begins as an Einstein model 
but is perturbed towards larger R than its equilibrium value. This model 
expands at an accelerating rate, and is the only continuously expanding 
n)del which does not begin fr an R(t)=0, i.e. the only expanding model which 
does not originate from a 'Big Bang'. It is known as the Eddington-Lemaitre 
model. 

1.3.10 Models with k=0, A O 

With k=Q, the locus of R2=0 in the A-R plane does not cross the ,k=0 
axis (see diagram below) . 

The form of R(t) is now completely specified by the sign of A . If A>0, 
the models are Lemaitre models; if A<0, they are Friedmann-Einstein models. 
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No 'bounce' models or Eddington-Lemaitre variants are possible. 

1.3.11 Models with k<0, A 0 

The locus of R2=0 now lies below that for k=0 models, but the form of 

the models is still specified by the sign of A, as in the k=0 cases. The 

velocities are higher at any given R than they are in the k=0 cases, but the 

overall forms of the models are still those of k=0. 

1.3.12 Summary of model types 

We can now review the main forms of the allowed models, with the parameter 

combinations which lead to them. 

a) CONTINUOUSLY EXPANDING 'BIG BANG' MODFT S: The hyperbolic (k<0, A =0) , 
Einstein-de Sitter (k=0,A=0) and Lemaitre (k>0,A>AE), (k<0, A>0) models 
and the model (k>0, A=AE and R(0) = 0) . 

b) C6CILLATING 'BIG BANG' MODELS: Friedmann—Einstein forms (k>0, A <AE) , 
(k<0, A<0) . 

c) CQVTINUCUSLY EXPANDING MODELS WITH NO BIG BANG: the Eddington-Lemaitre 

model (k>0, A =AE, R(0) = RE perturbed outwards) 
d) OSCILLATING MODELS WITH NO 'BIG BANG': 'Bounce' models (k>0, A<AE, 

R(0) large) 

e) CONTINUOUSLY CONTRACTING MODELS: (k>0, A =AE, R(0) = large or R(0) = 
RE perturbed inwards) 

f) STATIC MODEL: The Einstein model ( k>0, A = AE, R = RE) . 
The variety of R(t) forms forA# 0 is illustrated in the diagram below 

(taken fran W.Rindler, 'Essential Relativity', p.264 (1969)). 

i 

Des _ 

Cosmic time, t 

Only cases (e) and (f) above are immediately inconsistent with the 
observed recession of the galaxies. To make a detailed comparison with 
observations, however, we must note that we are not able to observe R(t) 

• 
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directly from an outsider's standpoint, but must extract information about R(t) 

and its derivatives from observations of the light received from distant 
objects at a sire le time of observation. To interpret our observations, 

therefore need to examine the propagation of radiation through the different 

world-rrodels. This problem is the subject of the next Qzapter. 


