ALTERNATIVE SOURCES: THE ROLE OF COAL AND SOLAR ENERGY

by H.A. Becker Professor of Chemical Engineering Queen's University

February 4, 1976

Slide 1

Energy Crisis

(crisis) = (danger) ∪ (opportunity)

Today's talk:

- solar energy utilization
- coal utilization
- hydrogen generation

Slide 2

Solar Energy

- direct capture:
 - a thermal/fluid collectors b photoelectric collectors
- wind:

windmills

- oceans:
 - a waves
 - b currents
 - c temperature gradients
- photosynthesis

Slide 3

Solar Radiation

1. The solar constant G_{O}

G_O = radiant flux density on a surface → to sun's rays, just above earth's atmosphere

Units: energy intercepted per unit area per unit time

Value: $G_0 = 1.36 \text{ KW/m}^2$

2. Solar surface temperature ${\tt T}_{\tt S}$

Value: $T_S \approx 6000^{\circ}C$

Observation: taking heat from a source at very high temperature. Thus high efficiency of conversion to work is theoretically possible.

Slide 4

Solar Flux at Earth's Surface

Solar energy flux on 1 sq. metre:

normal to sun's rays, no atmosphere: $G = G_O = 1.36 \text{ KW/m}^2$

 $G = 0.7 \text{ KW/m}^2$

normal, with atmosphere, clear day

G = 1 KW/m² 45° , with atmosphere, clear

15°, with atmosphere, clear $G = 0.1 \text{ KW/m}^2$

In the following talk, take $G = 0.5 \text{ KW/m}^2$

Slide 5

Modes of Solar Energy Use

We shall consider:

- home heating
- electric power generating station
- chemical process heating (for hydrogen generation)

Slide 6

Home Heating

Wanted: store energy for home heat-

ing in winter

Solution: - heat water during summer

and store in reservoir

 use stored hot water for home heating in winter

Questions: what ground area?

what reservoir volume?

Slide 7

Ground Requirement

Assumptions: - collect for 8 hours daily for 4 months

 require equivalent of 500 gal. fuel oil

Cumulative solar energy on 1 m²:

 $8(3600)(4)(30)(500) = 1.73 \times 10^9 \text{ J}$

= 1730 MJ

Energy equivalent of 500 gal. oil:

Minimum ground area:

 $79200/1730 = 46 \text{ m}^2$

Slide 8

Ground Requirement

Collect- ion effi- ciency, (%)	Area (m ²)	Dimensions of area, as a square.
100	46	7m x 7m, 21' x 21'
20	230	15m x 15m, 45' x 45'
5	920	30m x 30m, 90' x 90'

Slide 9

Reservoir Requirement

Assumption: heat water from 20°C to 65°C , taking 0.186 MJ/kg

Minimum Water Required: $79200/.186 = 4.26 \times 10^5 \text{ kg}$

⇒ 426 m³

 $426m^3 = 7.5m \times 7.5m \times 7.5m$

= 23' x 23' x 23'

Conclusion: reservoir will be large but possibly feasible

Slide 10

Solar Power Station

Suppose:- 1000 MW electric generating

capacity

- 20% efficiency converting thermal energy to electrical

Minimum ground area:

 $(1000 \times 10^6)/(.2)(500) = 10^7 \text{ m}^2$

 $= 10 \text{ km}^2$

Collect- Area Dimensions, ion effi- (m^2) as a square ciency, (%)

100

10 3km x 3km 50 7km x 7km

20 50 7km x 7km 5 200 14km x 14km

Note: power on only 10 hr/day

Thus average power is under 50% of that in-

dicated.

Slide 11

Solar Energy Collector for Home Heating

Recommended type: flat-plate collector (hot-house effect)

System: Schematic

Slide lla

Design Characteristic of Flat-Plate Collector

Spectrum of solar radiation:

E = radiant flux per unit wavelength

Visible range: .38 - .76 μ m Infrared: .76 - 1000 μ m

Wien's displacement law: at the maximum in the spectrum $\lambda T = .0028978 \text{ m} \cdot \text{K}$ Slide 11b

Design Characteristic of Flat-Plate Collector

Critical design parameter: reflectivity of the glass window ρ = reflectivity (fraction reflected)

Desired characteristic:

Maximum attainable temperature on collector plate:

Therefore if ρ = .95, T_{window} = 25°C and T_{max} = 568°C

Flat-Plate Collectors on Houses:

Slide 12
Solar Energy Collector for Power Station
Recommended type: solar boiler on tower in a field of focussed flat mirrors

Tower height: 500m Ground area: 3 km^2 Power: \sim 100MW Slide 13

Solar Energy Collector for Power Station
Design principle of solar boiler:

Slide 13a

Slide 13b

Power Station

Solar Energy Collector for

Solar Energy Collector for Power Station

Square mile (2.6 $\mbox{km}^2)$ mirror array with receiver atop 450 meter tower.

Heliostat with optical sensor redirecting energy onto a segment of the receiver.

Slide 14

Performance of Tower Type Solar Collector

- can produce steam at 425°C (maximum practical steam temperature)
- with gas (instead of water) as heat transfer medium, could get $\sim 1000^{\circ}$ C, high enough for supplying heat to any chemical process such as thermochemical H₂ production

Slide 15

Assessment of Solar Energy Now

- Systems can be built with existing, proven technology
- 2. Capital intensive
- Large land areas required for power
- Focussing type collectors only suitable for clear skies, very sunny areas (U.S. Southwest, Israel, Egypt, etc.)
- 5. Flat-plate collectors only suitable for small scale eg. home heating. Feasible in Canada. Reasonably installed only in new homes.
- In sunny central latitudes, solar cooking, drying,... very feasible

Slide 16

Coal

General observations:

- domestic heating with coal undesirable
- only low-sulphur coals suitable for burning directly (in power stations, chemical processing)
- most remaining coal is high in sulphur. Should remove S before use as fuel.
- best way to remove S is to process coal into gaseous and liquid products. Sulphur is removed in course of processing quite easily.
- gaseous and liquid products can be pipelined, burned in engines, etc.

Slide 17

Types of Processes Available

- Pyrolysis
 - → gas & liquid + char or coke
- 2. Gasification
 - → fuel gas &/or chemical synthesis gas
- 3. Liquifaction by direct hydrogenation
 - →3-4 bl oil per ton coal, + some gas, char
- Gasification followed by Fischer Tropsch synthesis
 - → oil + gas

Slide 18

Observations

- Canada has several centuries supply of available coal
- Several technologies are proven, many others nearly ready
- 3. Mining problems smaller than with tar sands $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

- Plant construction times 7+ years.
 No starts yet in Canada, little
 R&D
 - 5. Capital costs great, but worth it. Since resource will last for centuries, it is worth "gearing up" the economy to use it.

Slide 19

Hydrogen

Hydrogen economy in 21st century? Production: water splitting by

1. Electrolysis

2. Thermochemical process

Uses: 1. Pipeline gas for home, industry

- 2. Hydrogenation of coal
- Automobile & tractor fuel (storage as metal hydride, e.g. MgH₂)
- 4. Aircraft fuel (storage in wing tanks as liquid H₂)

Advantages: 1. Abundant raw material (H2O)

2. Virtually non-polluting in combustion(H_2 + air \rightarrow H_2 0 + NO_v)

- 3. Can be pipelined
- 4. Highest energy per unit mass

5. Means of storing

energy from intermittent sources(solar, tidal, wind, waves)

Slide 20

Hydrogen: Thermochemical processes

A chemical process of water splitting, $2\text{H}_2\text{O} \implies 2\text{H}_2 + \text{O}_2$

Thermal because heat must be supplied. Proposed heat sources: nuclear reactors, focussed solar collectors

Temperatures above 400°C, up to 800°C, are involved. Therefore must likely use gas as heat transfer medium (above max. steam temp. limits)

Processes under investigation by: Euratom, General Electric, Univ. of Florida, and many dozens of others

Slide 21

A Typical Thermochemical Process

"BEULAH", by General Electric: 2Cu + 2HCl(aq.)

4CuCl 2CuCl2 + Cu

2CuCl₂ 500°c²CuCl + Cl₂

 $Cl_2 + Mg(OH)_2$ $g_{ec} MgCl_2 + H_2O + 1/2(O_2)$

 $MgCl_2 + 2H_2O_3 Mg(OH)_2 + 2HCl(g)$

Slide 22

Thermochemical Processes

Problems: 1. In early stages of development, much lab & pilot

plant work still needed

2. Severe technological

problems: solid/liquid separations,
corrosion...

3. Require high temperatures in some steps, as from gas cooled nuclear reactors. Canada has none.

Assessment: 1. Still far in future, but some R&D should be funded now

2. May never become practical, because of corrosion, material separation problems,...

AUTO FUEL ECONOMY VS SPEED

AUTO FUEL ECONOMY VS WEIGHT

