
5. NEWTON’S LAWS OF MOTION

Newton began his discussion with a set of axioms and definitions which, as he

gave them, were in fact tautological.  The first was a definition of mass:

“The quantity of matter is the measure of the mass, arising from its density and 

bulk conjointly.”

This amounts to saying that mass is (density x volume).  If we deal with 

material of given density, it is useful to recognise that the mass of a sample 

increases in proportion to the sample’s volume – but the only practical definition 

of density is “mass divided by volume” so we cannot independently relate the masses

of different materials.  While we may have an intuitive idea of what we mean by 

“quantity of matter”, as soon as we try to make it precise we find it necessary to 

invoke the concept of force, which we cannot properly do until we have defined 

“mass”.  For the moment, we can presume, as Newton did, that we can eventually find

a satisfactory independent definition of “quantity of matter”.

Newton’s second definition stemmed from the ideas of Descartes:

“The quantity of motion is the measure of the same, arising from the velocity and 
quantity of matter conjointly.”

This defines the quantity which we today call the linear momentum, or just 

“momentum” for short. It is usually given the symbol ‘p’.  In algebraic language 

Newton is defining

p = mv

But wait!  We have seen the importance of remembering that velocity has direction 

as well as magnitude, so I denoted velocity symbolically by v with an arrow over 



it.  From here on I use the simpler bold-face notation v for this purpose.  As 

momentum is directly proportional to velocity it also carries information about 

direction (i.e. velocity horizontal and to the right means that momentum is also 

horizontal and to the right).  So we can write, more precisely:

p = m v

After making further definitions and clarifications, Newton enunciated three 

principles which became known as “Newton’s Laws of Motion”:

“  Law 1:  Every body continues in its state of rest, or of uniform motion in a 
straight line, unless it is compelled to change that state by forces impressed on 
it.”

“Law 2: The change of motion is proportional to the motive force impressed, and is 
made in the direction in which that force is impressed.”

“Law 3: To every action there is always opposed an equal reaction, or the mutual 
actions of two bodies upon each other are always equal and directed to contrary 
parts.”

The content of these three statements transformed physical science, so they 

merit careful examination.  The “First Law” is based on Galileo’s and Descartes’ 

statements that matter in motion tends to remain in motion.  It identifies a state 

of motion, not a place, as the preferred condition of matter.  It also identifies 

the preferred motion as uniform motion in a straight line, and it stipulates how we

are to recognise the entity to be called “force”.  It sets up the language of our 

description of motion by asserting that any deviation from uniform straight-line 

motion is to be considered proof that a force has acted on the moving object.

To write this using mathematical symbolism we need a new symbol for the new 

concept of the force.  We will use the symbol F (the bold face again reminding us 

that this quantity has a direction as well as a magnitude F). Newton’s First Law 

says that the velocity is constant in magnitude and direction if there is no force 

acting on the moving body.  In symbols:



v = constant if F = 0

i.e.,  Δv = 0 if F = 0 whatever the Δt over which we measure Δv,

i.e., acceleration a = Δv/Δt = 0 if F = 0

How about momentum?  As momentum p = mv, if both m and v are constant, it is 

obvious that:

p = constant if F = 0, 

i.e.,  Δp = 0 if F = 0 whatever the time interval Δt over which we measure Δp,

i.e., Δp/Δt = 0 if F = 0

You may be asking “how many more different ways are we going to invent to write 

down Newton’s First Law, which was only a definition anyway?”  The point of this is

that all of these statements are equivalent because any of them embodies Newton’s 

First Law.  In different circumstances we may wish to invoke whichever of them is 

most helpful for analysing a motion.  These statements also show the choices Newton

had when he was deciding on his Second Law, which specifies how to calculate a 

force from its effects.  Merely knowing that “F=0 makes Δv, a, and Δp = 0” does not

tell us all we need to know about how forces are to be related to changes in 

velocity, or in momentum.  A host of different possibilities for the relationships 

between these quantities could be consistent with Newton’s First Law.  Newton’s own

proposal turned out to be so productive that nobody since has seriously criticised 

it as a working definition.

In modern language Newton’s Second Law reads “The rate of change of momentum 

of a moving object is proportional to the force acting on the object, and the 

direction of the change produced by a given force is in the direction of the force 

itself.”  In symbols, this is:

F =  Δp / Δt.



In fact this proportion is more general in its applications than we will usually 

need.  Because p = m v, a change Δp in p could involve either a change in velocity 

v or a change in the mass m of the moving object. For example, a rocket burning 

fuel and ejecting hot gases, or discarding empty fuel tanks, may change its mass 

during flight.  Newton’s Second law is flexible enough to handle that case, but 

such generality is often more than we need.  The changes in momentum that we most 

often need to analyse come from changes in velocity alone. If a moving object with 

fixed mass m has momentum p = mv now and momentum p’ = mv’ later, the change in 

momentum would be:

 

Δp = p’ – p = mv’ – mv = m(v’ – v) = m Δv

 Then:

F =  Δp/Δt = m Δv/Δt = ma

i.e., Force = (mass x acceleration),  and the force is in the direction of the 

acceleration that it causes.  This is the hard core of Newton’s concept which soon 

became the most productive tool in the science of motion (later known as “Newtonian

mechanics” in recognition of Newton's role in clarifying the basic concepts).

Be sure to recognise Newton's Second Law for what it is: a definition of what

will be meant by “force” from now on.  It says nothing about what a force is, nor 

why there should be such things as forces in Nature. It simply says “when we see a 

moving object of mass m change its motion so that there was an acceleration a, we 

will say that this acceleration was produced by a force F = m a”. It is a matter of

language, really, but “force” is now so precisely defined that the concept can be 

handled mathematically to make quantitative statements.  It is the goal of 

experimental science to provide quantitative data about Nature, and the goal of 

theoretical science to make quantitative predictions to compare with future (or 



other) data.  To reach these goals, we need unambiguous definitions and measures of

our concepts, and those are the essential elements provided by Newton’s Second Law.

The definition F = m a is not arbitrary.  It would not have been useful if it

did not correspond to practical realities. Consider a situation in which you are 

trying to push a stalled car down a road.  To get it moving with given velocity you

will try to provide a given acceleration a for a given time, say ten seconds.  You 

know that a massive limousine will require a heftier push than a tiny sub-compact, 

i.e. that to give “more m” a given a will require “more F”.  You could establish 

that twice the car (i.e. twice the m) requires twice the F (one person pushing 

twice as hard or two similar people pushing instead of one).  You also know that 

you must push in the direction of the acceleration that you want to achieve.  

F = ma is evidently an intuitively reasonable definition based on this sort 

of experience.  Its power comes from its utility as a tool for analysing much less 

intuitive situations, such as guiding a space capsule launched from the Earth’s 

surface towards a “soft” landing on the Moon or Mars by making detailed 

calculations with the same basic recipe for “force”.  In detail, the proof of a 

pudding is in the eating, and this one has now eaten well for several centuries.

Newton was not alone in thinking along these lines.  Robert Hooke’s lecture  

to the Royal Society in 1666 had argued that all bodies move in straight lines 

unless deflected by some external force; and in 1679 Hooke wrote to Newton about a 

force towards the Sun, a solar pull, keeping the planets in their orbits - but if 

Hooke had come to a concept of force that was as clearly formulated as Newton’s, he

kept it to himself.

Newton’s Third Law also embodies some familiar experiences.  Suppose you 

stand with a friend of about your own height and build (i.e., of about your mass) 

on an ice rink and you give him or her a steady push.  If your footings are the 

same, you both move, about equally and in opposite directions.  While pushing on 

your friend you feel a push back on you: a reaction.  If you push on a mass much 

larger than your own, the effects of the reaction may be much larger than those of 

your own force, as you can learn by trying to push a massive limousine in an icy 



parking lot: the limo may move forward a little but the force it exerts back on you

can give you an acceleration much larger than the one you gave it.  You try to push

it, but you end up being pushed backwards.  Another example: you bang your hand on 

a table, exerting a force and possibly crumpling something on the table, but the 

reaction force can make your hand hurt afterwards.  Your force can accelerate 

things on the table, but the reaction force accelerates bone and tissue in your 

hand, possibly making it hurt for a while. 

Newton’s Third Law says that when bodies exert forces on each other, these 

forces come in equal and opposite pairs – action and reaction.  When you push on 

the limousine, you exert a force F giving the limousine an acceleration 

a(limo) = F  / m(limo)

but by Newton’s Third Law the limousine exerts an equal and opposite force -F on 

you, so, again from F = ma you can conclude that your acceleration will be 

a(you) = -F  / m(you) 

so if your mass is much less than the limousine’s, your acceleration will be much 

greater in inverse proportion. This is what makes it so difficult to push a heavy 

car out of an icy parking lot unless you wear cleated shoes.  Good cleats anchor 

your feet firmly to the Earth, so m(you) is effectively replaced by m(you+Earth) 

which is huge compared to m(limo) whereon the car moves and you (almost) do not.

Newton’s Third Law implies that a force is not something that one piece of 

matter does to another in isolation, but is an interaction between two pieces of 

matter.  The concept of a force as a mutual interaction between two bodies reads 

more deeply into everyday experience than is immediately obvious, but it was a very

significant concept in the development of our description of the world, first 

demonstrated brilliantly by Newton’s mathematical description of gravitation in the

Solar System.


