EIGHT ARC MINUTES, THE TELESCOPE AND A DIALOGUE -
KEPLER AND GALILEO

So far we have seen one man at a time wrestling with the problems of a cos-
mology which seemed to grow increasingly complex without changing of its very
essence. Indeed it would be fair to ask if any real progress in understanding the
world had been made between Aristotle and Tycho, for in the span of about 2000 years
heliocentrism had come (Aristarchos) and gone (Ptolemy) because of the difficulties
posed by a rotating Earth. Then again it had come (Copernicus) and gone again
(Tycho) for the same reasons. Brahe had documented the celestial motions with
unprecedented accuracy, yet the preferred world-system had reverted basically to
that of Heraklides, Aristotle's pupil. It required entirely new thinking to break
the cycle, and in this Chapter we shall see how two brilliant but dissimilar geniuses,
working at the same time but not in concert, began finally to cross the elusive

conceptual bridge towards a modern science of the Universe.

1. Kepler's Mystery

Johannes Kepler (Figure 1) was born on December 27, 1571, the son of an
unstable mercenary adventurer and an innkeeper's daughter who Kepler himself des-
cribed as "small, thin, swarthy, gossiping and quarrelsome, of a bad disposition".
Johannes was sickly, myopic and unhappy as a child; a person less likely to galvan-
ise the science of his time could hardly have been imagined.

In November 1577 a brilliant comet appeared. The determination of its motion
among the stars was another of Tyge Brahe's great successes, for he showed that it
lay beyond the Moon in the realm of the heavens, contrary to Aristotelian doctrine.
Kepler, then six years old, was taken by his mother +to a high place to see the comet,
an outing for which science may be greatly indebted to this unpleasant-sounding
woman, for the experience made some impression on the boy who was to inherit Brahe's
incomparable data. Kepler entered a seminary where in addition to theology he learned
mathematics, and later studied theology at the University of Tiibingen. At Tiubingen
he encountered, became convinced by, and publicly defended Copernican heliocentrism.
This may have had something to do with the fact that in 1593 the University recommen-

ded him for the post of lecturer in mathematics and astronomy at Graz in Austria,
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Johannes Kepler. (Yerkes Observatory.)



rather than for a position in the church. Soon after his arrival at Graz he con-

ceived the basic idea of his first essay in cosmology, which was published in 1596

under the title "A Forerunner to Cosmographical Treatises, containing the Cosmic
Mystery of the admirable proportions between the Heavenly Orbits and the true and
proper reasons for their Numbers, Magnitudes and Periodic Motions".

Kepler's "Cosmic Mystery" was a geometrical conception of the planetary
system that was breathtaking in its originality and which proved to be total in
its irrelevance. Its importance to us today is that while Kepler was still a young
man he experienced the euphoria of believing that he had discovered the deepest
secrets of the Universe and became critical of Koppernigk's system and his data while
remaining convinced that its underlying heliocentrism was correct. The experience
gave Kepler the intellectual momentum to begin asking totally new questions about
the underlying pattern in the celestial motions.

At the core of Kepler's "Mystery'" lay the fact that there are only five
regular solids--perfectly symmetrical three-dimensional figures all of whose faces
are identical (Figure 2). No others exist which completely enclose three-dimensional
space with identically-shaped and identically-sized faces. Each regular solid can
be related to two spheres: the inscribed sphere exactly contained by its faces,

touching each face precisely at its centre, and the circumscribed sphere exactly

containing its corners, just touching each and every one. Thus the five regular
solids can be nested into a set of six spheres, the circumscribed sphere of one
solid being the inscribed sphere of the next largest, as in Figure 3. When this
is done, there results a set of six spheres whose relative sizes are determined
by a basic symmetry of three-dimensional space.

Kepler identified six such spheres with the six planetary orbits of the
Copernican model. Computation showed him that the relative sizes of the Copernican
planetary orbits approximated those of the six spheres if the solids were ordered
as follows: cube (outermost), tetrahedron, dodecahedron, icosahedron, octahedron.
He became so convinced that this coincidence would reveal the entire mystery of
Creation that he declared the (approximately 5%) discrepancies between the
Copernican data and his theory to be the result of poor observations of the plane-
tary system, and he hoped that Brahe's then unpublished studies would prove him
right. The significance of the regular solids was in fact to prove illusory, but

Kepler's mistrust of Koppernigk's data and his faith in Brahe were to serve him

well later.



W & @ Cd) (e)
Ra.2 The five regular siuds
@) Tetrohedron, 4 {rianguar sides
®) Cuke . b square sider
(C) Ocfahedren. | B \'rl'Ahev\\.nx Sides

(4) Dodecahedsrsn, |2 benf%on.a.ﬁ.m
(€) Iecsahedron, 20 frianguwlos sides



Model of the universe; the outermost sphere is Saturn’s.

Detail, showing the spheres of Mars, Earth, Venus
and Mercury with the Sun in the centre.

ﬁa )
Diagrams *Ffm\ Kepler's “Cosmac Mysreny”



-3 =

Furthermore, the excitement of "explaining" both the number of then-known

planets (there could be only six in his scheme) and the relative sizes of their

orbits encouraged him to try to account for one more observation, namely the time
taken by each planet to revolve around the Sun. The more distant a planet was
from the Sun, the longer it took for its orbit; Koppernigk had noticed that. But
Kepler read significance into the fact that the orbit times were not longer simply
in proportion to the orbit sizes; the outer planets actually travelled at slower
speeds in their orbits. He considered this to be consistent with the idea that
the planets were moved by some influence which radiated outwards from the Sun,
decreasing in effectiveness with distance just as the brightness from a lamp
decreases with distance.

Here was Kepler's truly revolutionary conception. For the first time a
cosmologist argued that something which had a counterpart in everyday experience
caused the heavenly motions. Such an idea was quite alien to the Aristotelian world
view, in which there could be no link between terrestrial phenomena and the cause of
the motions in the skies. Kepler's embryonic idea of a solar influence which dimin-
ished with increasing distance from its source was still far from being a detailed
theory of gravity--but it pointed in a conceptual direction from which there would,
at last, be no return.

The prescience of Kepler's explanation for the orbit times can hardly be
overestimated. Yet Kepler was still carrying a rich mix of concepts With him on
his intellectual journey; the final section of the "Cosmic Mystery" proigd a horo-
scope for the first day of Creation, estimated at Sunday, April 27, 4977 B.C. It

was an optimistic horoscope.

2. Kepler and Tycho

Soon after the publication of his "Cosmic Mystery", Kepler's wish to have
access to Tycho's data came true as an indirect result of some petty squabbling
in Denmark and of religious persecution in Austria. Frederick II of Denmark, Brahe's
original benefactor, had died in 1588. ‘Tyge had done little to endear himself
to the Danish royal house and nobility since then. He mistreated his tenants,
neglected wvarious small tasks associated with his grants, and became quarrelsome
in his relations with various influential statesmen. ZEarly in 1597 his royal
grants were curtailed, and soon afterwards he moved most of his instruments and

his household from Hveen, commenting that "an astronomer must be cosmopolitan,
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because ignorant statesmen cannot be expected to value his services. By 1599 he

had secured the position of mathematician to Emperor Rudolf IT and moved his instru-

ments and retinue to Prague.
This was a happy accident, for he was then within range of Kepler, who was

being pressured out of his job in Graz. Kepler had received a Lutheran theological

education and Graz was in Catholic Styria, a provinece of Austria. In the Summer
of 1598 all Lutheran preachers and teachers were ordered out of Styria within eight
days on pain of death. An exception was made in Kepler's case because his ability
had been recognised by his superiors, but he was understandably eager to move to a
more benign environment. He had sent Brahe a copy of the "Cosmic Mystery'" in 1598,
and Tyge had replied, complimenting Kepler on his ingenuity but expressing doubts
sbout the numerical accuracy of his work and about his adoption of Copernican helio-
centrism. On 9th December 1599, Brahe wrote to Kepler from Prague hoping that they
might soon meet. Kepler travelled to Prague during January 1600, to find Brahe much
involved in getting his observations under way again. He was invited to stay as an
assistant; he had hoped to be received as an equal. Neither Kepler nor Brahe being
of a calm disposition, relations between them were fractious, and at one point Kepler
actually left Tycho's castle contemplating permanent return to Graz. Sanity and
Tycho's need for skilled colleagues prevailed however, and Kepler remained as one of
Brahe's assistants until the latter's premature death on October 24, 1601.

On his deathbed, Tyge Brahe begged Kepler to finish the production of new
planetary tables from the observations which had been the Dane's lifework, and
to base their computation on Tycho's system rather than the Copernican model.
On November 6, 1601, Kepler was appointed imperial mathematician as Brahe's successor

—-at half his dead patron's salary.

3. The Eight Arc Minutes

In 1609 Kepler published his second great treatise, under the revealing
title: "A New Astronomy based on Causation, or a Physics of the Sky derived from
Investigations of the Star Mars, founded on Observations of the noble Tycho Brahe".
The "causation" of the planetary motions was now to Kepler a dominant factor worthy
of its prominence in the title. The "Cosmic Mystery" of the regular solids was
discarded--Brahe's observations had not confirmed it. Undaunted, Kepler had begun
again, this time trying to construct an improved Copernican system, perfect circles,
epicycles and all. The strictest test was to be the most obviously non-uniform

planetary motion--that of Mars.
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Kepler first cleaned out some absurd remnants of geocentrism in the Coper-
nican model--for example, Koppernigk had ascribed to Mars' orbit a steady oscillation
in space which depended on the position in space of the Farth. Kepler perceived that
there should be no causal basis for this in a Sun-centred system, and that it had
become necessary in the Copernican system because Koppernigk assumed that the planes
of the planetary orbits intersected at Earth. As soon as Kepler made the more
reasonable assumption that the orbital planes intersected in the Sun, the problem
vanished. He then restored Ptolemy's Equants, at least for computational purposes,
and proceeded to labour for five years over 900 pages of longhand calculations of
the orbit of the one planet, Mars. A sample of his calculations is shown in Figure
L. By the time he had finished, his model could reproduce the observed motion of
Mars to within 8 arc minutes (a little less than 1/7 of a degree) on the sky.
Considering that the planetary tables of his time contained predictions which failed
to match observations by as much as several degrees at worst, a lesser man might
have settled for this result. But Kepler knew that Brahe's best planetary obser-
vations should be accurate to about 2 arc minutes (1/30 of a degree), so the
discrepancy between his model and observation was as much as four times the expected
uncertainty in the data. At this point, Kepler took the giant step from which all
astronomers before him had shrunk. Perhaps it was easier for him because he had
already discarded his own favourite theory--but what he did speaks for itself, for

he abandoned the entire system of circular motions which had dominated the theories

for over 2000 years.

He wrote:

"Since the divine goodness has given to us in Tycho Brahe a most
careful observer, from whose observations the error of 8 arc minutes is
shown in this calculation ... it is right that we should with gratitude
recognise and make use of this gift of God. Let us certainly work it out,
so that we finally show the true form of the celestial motions ... I myself
shall lead the way for others ... according to my small abilities. For if
I could have treated the 8 arc minutes as negligible I should already have
corrected the hypothesis accordingly. But as they could not be neglected,
these 8 arc minutes alone have led the way towards the complete reformation

of astronomy and have been made the subject-matter of a great part of this
work."

The same Johannes Kepler who in 1597 had asserted that if the data contra-
dicted his hypothesis (of the regular solids) then the data must be wrong, in
1609 threw out all existing theories in the face of disagreement with data that

he trusted. 1In so doing, he launched his science on a course that would unify
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theory and observation in physics and astronomy, through the framework of mathematical
logic. Kepler was not to complete the task of formalising the new world-view--~
that privilege fell to Isaac Newton--but his reaction to the eight-arc-minute dis-

crepancy marked the end of the Aristotelian dominance of astronomy.

4, Elliptical Orbits--Kepler's First and Second Laws

Kepler's "New Astronomy" went on to consider afresh the nature of the motion
of Mars. Kepler realised that the shape of Mars' path around the Sun could be
determined from Tycho's data by making use of observations made at times differing
by exactly one Mars year--the time taken by Mars to perform one orbit. The first
step was to discover what time interval that actually is. The method had been used
by Copernicus, but we consider it here because this is the first occasion on which
it played a crucial role in the analysis.

We observe Mars from Earth, which is itself in motion. By studying the
path of the Sun across the stellar background we know that the Earth performs its
orbit around the Sun once in 365 1/4 days, and call this--the Earth's orbital
period--the "year". Because of the Earth's motion, we do not see Mars at the same
place in the sky at the end of each Martian orbital period, or Mars year (Figure
5). Only if the Earth made an exact number of complete orbits in a Mars year would we
see Mars against the same stellar background each time it reached the same place in
its orbit. This means that the length of the Mars year cannot be determined directly
by observing the motion of Mars against the stellar background. (The same problem
exists for all the other planets too.) The trick is to measure the length of another

period for each planet--the synodic period--and convert that to the orbital period

by computation. The synodic period of a planet is the time interval between success-
ive alignments such as in Figure 6a where Sun, Earth and planet are in-line (except
for the different planes of the orbits, which are only a minor extra complication).
Because it is the period between successive appearances of the planet opposite to

the Sun in the sky (crossing the observer's meridian on Earth at "midnight") it can
be measured fairly easily. For Mars it is T80 days, or two Earth years plus 49 1/2
days. Now look at Figure 6h. Suppose that observations are begun when Earth is at
E; and Mars is at Mj. One synodic period of Mars later, Earth has made a little

over two and one-seventh orbits and Mars a little over one, bringing the planets to

Ey, and M, when the second measurement is made. The point is that, knowing the Earth's
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orbital period to be 365 1/4 days, we can calculate the size of the angle E;SEj;

exactly: the Earth travels 360° in orbit in 365 1/4 days, so it travels (780 = 365 1/L4)
x 360° = 768 1/2° in the T80-day synodic period of Mars. This is two complete

orbits (720°) plus the angle ESE,, which must therefore be 48 1/2°. 1In this time

Mars has travelled one complete orbit (back to M;) plus the extra path from M; to

Mp. But M;SMp is the same angle as E1SE,, so Mars has travelled 360° + 48 1/2° =

408 1/2° in the T80 days. This means that Mars would travel exactly one orbit (360°)

in (360 = 408 1/2) x T80 days, or 687 days. The orbital period of Mars is thus 687
days.

Kepler selected from Tycho's notes sets of observations of Mars that had
been made on dates that were 687 days apart. Each such observation allowed him
to calculate the angle between Sun, Earth and Mars at the time of the measurement.
Consider Figure Ta. Any one such observation told Kepler that, on that date, Mars
was somewhere in space in the direction of the arrowed line, but at an unknown dis-
tance from Earth which was at E;. A measurement 687 days later would have been
made while Earth was at a different position (E,) in its orbit--the Earth would have
travelled (687 + 365 1/L4) x 360°, or 677° around the orbit short of two full orbits
by 43°. But because Kepler knew the length of Earth's year, he knew that the angle
Eo,SE; in Figure T would be 43°. He also knew that because one Mars year had elaﬁsed
between the two measurements, Mars was at the same place in its orbit at the second
measurement as it was when originally seen from E;. The second measurement told him
that Mars was somewhere in space in the direction of the second arrow, also at an
unknown distance: the intersection of the lines E;M and E,M (Figure Tb) must
then define the unique position of Mars in space at the times when both measurements
were made. It was then a simple exercise in trigonometry to deduce the exact
location of that one point on Mars' orbit from a diagram like Figure Tb. Combina-
tion of several pairs of observations of Mars, each pair 687 days apart, thus
allowed Kepler to determine a set of positions in space through which the orbit
of Mars must pass--as in Figure Tc. What then remained was to deduce the mathema-
tical nature of the oval curve which passed through the points. This last step
was difficult and the shape of the curve gave Kepler much displeasure.

For the eventual result was an orbit for Mars in the form of an ellipse,
with the Sun not at its centre but offset to one side. Kepler initially regarded
this result as ugly, describing it in a letter to the contemporary astronomer Longo-
montanus in 1604 as "a cartful of dung". It was indeed some years before he

realised that the curve he had deduced was the classical elliptical form known to
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the Greek geometers. Figure 8 illustrates the definition of the elliptical

Whereas the circle has a single defining point (its centre) from which

curve.
s on the circle are equally distant, the ellipse has two defining points,

all point
the foci; all points on an ellipse are such that the sum of thelr distances to
the two foci is the same. Thus an ellipse can be generated by attaching the two
ends of a short cord to a drawing board with a pair of thumb tacks as in Figure 8
and moving a pencil on the drawing board to keep the cord taut. The points B and D
are the two foci, and the total distance BP + PD is the same for any point P on
the ellipse. This total distance is also equal to the length of the longest diameter
or "major axis" of the ellipse, AE (Fig. 8). The separation of the foci (BD) divi-
ded by the major axis length (AE) is known as the "eccentricity'". If folded about
the major axis the two halves of the ellipse are identical. The shortest diameter
of the ellipse is at right angles to the major axis, and is called the minor axis;
the two halves of the curve on each side of the minor axis are also identical. The
ellipse thus has considerable symmetry, perhaps less than Kepler desired but still
far from mathematical anarchy.

Kepler further found that the Sun lay at one of the two foci of the orbit of
Mars (the other focus being empty) and that the eccentricity of the orbit was about
one part in 10. If Mars traced an elliptical orbit, then presumably so did Earth,
and so Kepler proceeded to reanalyse Tycho's data until he obtained mutually con-
sistent orbits for both planets. Earth's orbit he found to be an ellipse much clo-
ser in form to a circle than was the orbit of Mars--the eccentricity of Earth's
orbit was only one part in 50. Again, the Sun lay at a focus of Earth's elliptical
path. From these results Kepler inferred his First Law of Planetary Motion--the
orbits of the planets are ellipses with the Sun lying at one focus of each ellipse.
He later confirmed the result for planets other than the Earth and Mars.

As the elliptical path took each planet alternately closer to and
further from, the Sun, Kepler expected to find a variation of orbital speed with
distance, corresponding to his presumed solar "influence" varying with distance.
He was not disappointed. The "New Astronomy" announced that Tycho's data revealed
another aspect of the planetary motions—-each planet travels fastest when closest
to the Sun and slowest when furthest away. Kepler perceived further that the
variation in orbital speed corresponded to an elegant symmetry: if an imaginary
line joined each planet to the Sun, then the planet's orbital speed varied exactly
so that the line swept out equal areas around the Sun in equal times (Figure 9).

This "law of areas" became Kepler's Second Law of Planetary Motion. It and the

distance variation combined to explain Hipparchos' observation of the unequal
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lengths of the four seasons. e
Kepler's discovery of these regularities in Tycho's data was an analytica
demanding both the courage to break with centuries of

feat of the highest order,
He elaborated

on and the mathematical skill to handle the new calculations.

"influence"; impressed by the analysis of mag-

traditi
further on his concept of a solar
netic phenomena that had been made in 1600 by his English contemporary, William

Gilbert, Kepler speculated that some magnetic force from the Sun drove the planets
around their orbits. These ideas were wrong-headed, but we must remember that in
considering any physical cause at all for the planetary motions, Kepler was
treading completely new ground. His concept of a solar influence, though fuzzy
compared with Newton's final description of gravity, was clear enough to dissuade
him from considering Tycho's Earth-centred compromise any further, despite the

fact that a Tychonic system with elliptical orbits would have been mathematically

equivalent to Kepler's own.

5. Kepler's Celestial Music

When the "New Astronomy'" was published Kepler was thirty-seven. His
later years were not inactive. He published commentaries on Galileo's telescopic
discoveries, a Biblical chronology, a treatise on the shape of wine-barrels, a
textbook on optics, a discussion of the mathematics of logarithms, and several
astronomical books. Despite the experiences of civil war and pestilence in
Prague, of the fall from power of his patron Emperor Rudolph, of the deaths of
his wife and favourite child, of his removal to Linz from war-torn Prague, and of
the trial for witcheraft of his mother (whose legal defence he organised), he
published in 1618 his "Harmony of the World". In this book Kepler attempted a
synthesis of all that bore mathematical symmetry in geometry, music, astronomy
and astrology. This work constructed a maze of speculations, including an inter-
pretation of the planetary motions as "a continuous song for several voices ... a
music which through discordant tensions, through sincopes and cadenzas ... progresses
toward certain predesigned, quasi-six-voiced clausulas and thereby sets landmarks
in the immeasurable flow of time". In this celestial choir Kepler found the Earth
associated with the notes "Fa'" and "Mi" in the scale--which in keeping with his
times he interpreted as "Famine" and "Misery". Buried in this outpouring of
mysticism was his Third Law of Planetary Motion--his final statement of the
relation between the periods and the sizes of the planetary orbits which had first

encouraged him to contemplate the presence of a regulating solar influence.
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Kepler's Third Law was that the squares of the orbital periods of the
planets increased in proportion to the cubes of the major axis lengths of the
orbits. Denoting the orbital period of a planet by T and the length of the major

axis of its orbital ellipse by a, then

where k was the same number for all the planets. The Law held to great accuracy
(see Table 1) in Tycho's data. It was to be a crucial verification of Newton's

theory of gravity more than fifty years later.

Table 1

KEPLER'S HARMONIC LAW
(data in units for which k = 1)

Planet Distance (a) Orbital Distance (a3) Period (T2)
from Sun Period (T) cubed Squared
(Earth distance=1 unit) (Earth Years)

Mercury 0.387 0.241 0.058 0.058
Venus 0.723 0.615 0.378 0.378
Earth 1.00 1.00 1.00 1.00
Mars 1.524 1.881 3.5k 3.54
Jupiter 5.20 11.86 14 14
Saturn 9.5k 29.L46 868 868

The Thirty Years' War severely disrupted Kepler's life after the
appearance of the "Harmony of the Worlds". In 1627 he finally produced the
improved tables of planetary positions that the dying Tycho had entreated him
to compute; Kepler's "Rudolphine Tables'" were of course based on his own model
of the Solar System, and were about 50 times more accurate in their predictions
than any that preceded them. Astronomers could have had no better proof of the
validity of Kepler's description of the Solar System. But for Kepler the years
from 1618 to his death in 1630 were mainly a time of personal distress and
confusion. His own view of his last years is illustrated by the final sentence
of his letter, dated November 6, 1629, to Jakob Bartsch, a young mathematician and
physician who assisted him in the production of planetary tables and married his

daughter Susanna:
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. Mihen the storms are raging and the shipwreck of the state is frightenlng

there is nothing nobler for us to do than to let down the anchor of our

us,
. "
peaceful studies into the ground of eternity .

6. Galileo's Message from the Stars

The years of Kepler's life (1571-1630) were completely overlapped by those
of the Italian Galileo Galilei (Figure 10), who was born in 1564 and died in 16k42.
Galileo's contributions to the downfall of the Aristotelian world-view and of geo-
tric thinking were as irrevocable as those of Kepler, yet Galileo's insights have
virtually nothing in common with Kepler's Laws. Each of these contemporaneous
giants discovered the most profound subtleties of the world around him without
being able to communicate the real essence of his work to the other. It is not
that there was no correspondence between them; the facts are still more curious
than that. Each seems to have been unable to take up and appreciate the ideas of
the other--yet between them they had all the information from which the next
generation of astronomers and physicists would distil the new world-picture.

. Galileo as a young man was a rebel against authority who would believe
nothing of the Aristotelian doctrine unless it was demonstrable to his own eyes.
Never willing to accept any statement about the physical world on the evidence
of ancient texts, and unable to conceal his contempt for those among his elders
who were, Galileo became a temporary "drop-out'" from the University of Pisa in
1585. Four years later, with several successful researches into mechanics and
hydrostatics behind him, he was appointed to the same university as a lecturer
in mathematics, and in 1592, he became Professor of Mathematics at the University
of Padua.

Popular mythology associates three famous events with the name of
Galileo--the invention of the telescope, the disproof of Aristotelian mechanics

byAEEEQPin€Wb§J}§7Qf7déf?ET?EE7WEight§4fTOQ the leaning Tower of Pisa, and murmuring

"eppur si muove" at the end of recanting his heliocentric teachings before the
Inquisition. It is certain that the first event had nothing to do with Galileo;ﬁ R
and it is probable that the other two are apocryphal. The myth does however

point to the three dominant themes in Galileo's career--his use of new technology

to observe the heavens, his use of experiments to refute Aristotelian concepts

‘ of motion, and his public conflict with the dogma of the Catholic Church.
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The principle of the telescope was discovered accidentally in 1607 by an
apprentice in the shop of a Dutch maker of spectacles named Hans Lippershey. The
realisation that a suitable combination of two convex lenses, as in Figure 11, can
be used to produce a magnified image of a distant object was a technological
advance which spread across Europe like wildfire, not the least of its applications
being its use as a spyglass by the military. Galileo's contribution was to refine
the instrument and to conceive of its use to explore the phenomena of the skies.

No program of observation of the heavens more capable of astounding the
Seventeenth-Century world could have been attempted. By a strange quirk of human
physiology, a vast array of phenomena in the Solar System lies Jjust below the
threshold of perception by the unaided eye but can be seen clearly with even the
most rudimentary telescope--a reason for the great popularity of amateur astronomy
with modest instruments even to this day. In just ten months Galileo's telescopic
exploration of the heavens demolished almost every expectation of the Aristot-
elians concerning the nature of the celestial bodies.

In 1610, the year following Kepler's "New Astronomy'" Galileo published

his amazing discoveries in a book entitled

"The Starry Messenger - Unfolding Great and Marvellous Sights, and
proposing them to the Attention of Everyone, but especially Philosophers
and Astronomers".

Unlike Kepler, whose rambling treatises mixed mathematical science with
huge doses of mystical speculations, Galileo wrote briefly and clearly, not
in Latin but in the Italian vernacular. There was no possibility of mistaking

the nature of Galileo's messages from the stars:

"About 10 months ago a report reached my ears that a Dutchman had
constructed a telescope, by the aid of which visible objects, although
at a great distance from the eye of the observer, were seen distinctly
as if near ... A few days later I received confirmation of the report in
a letter written from Paris by a noble Frenchman, Jacques Badovere, which
finally determined me to give myself up first to inquire into the
principle of the telescope, and then to consider the means by which I
might compass the invention of a similar instrument, which a little
while after I succeeded in doing ... At length, by sparing neither
labour nor expense, I succeeded in constructing for myself an instrument
so superior that objects seen through it appeared magnified nearly a
thousand times, and more than thirty times nearer than if viewed Dby
the natural powers of sight alone".
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Galileo turned this instrument upon the Moon, and thus became the first
Man to behold the rugged landscape of craters and mountains and the large dark
flat areas which we now know to be boulder-strewn plains. His sketches showing
the principal types of feature are reproduced in Figure 12. Galileo correctly
interpreted the bright spots just inside the dark half of the Moon's sphere as
the sunlit peaks of high mountains whose lower slopes were still in darkness
before the lunar sunrise; he then used the phenomenon to estimate the heights
of mountains on the Moon, concluding that some peaks were as much as 22,000 feet
high. He thus saw that the Moon was not the perfect Aristotelian heavenly sphere,
but a ruggedly landscaped world with features comparable to Earth's mountain
ranges and valleys. A more powerful blow to Aristotelian concepts could hardly
have been imagined, but many more followed in the next pages of the "Starry
Messenger".

Galileo had found that his telescopes produced little or no increase
in the apparent sizes of stars, yet magnified each known planet to a disc-like
image. Even when brought "thirty times nearer" the stars appeared simply as
brilliant points of light, whereas the faces of the planets became clearly re-
solved. This was consistent with Aristarchos' concept that the stars were vastly
more remote than the Sun, so that even under the magnification of Galileo's
telescope their true features could not be distinguished.

The telescope did however reveal one totally unexpected aspect of the
stars--their vast number. The unaided eye forms an image using the light which
passes through the open aperture of the eye-pupil--typically about one square
millimetre in area; the telescopic image is formed from all the light which
passes through its first (or "object") lens--in Galileo's instrument the area
of the object lens was more than a thousand square millimetres. The sheer amount
of extra light it concentrated into the image compared with that gathered by the
eye made visible thousands of previously invisible faint stars. Galileo discovered
that the band of pearly light across the sky known since ancient times as the

"Milky Way" was actually:

"A mass of innumerable stars planted together in clusters. Upon
whatever part of it you direct the telescope straightaway a vast crowd
of stars presents itself to view ... and whereas that milky brightness,
like the brightness of a white cloud, is not only to be seen in the
Milky Way, but several spots of a similar colour shine faintly here
and there in the heavens, if you turn the telescope upon any of them
you will find a cluster of stars packed close together'.
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As long as the number of stars in the sky remained countably finite,
the concept of a finite Universe had seemed preferable to the open-ended helio-
centric view, and Aristarchos' concept of an infinite distance to the stars found
little sympathy. But Galileo's discovery of uncountable numbers of faint stars
opened the door to another infinity--to the notion that Man's experience of the
Universe had hitherto been limited by the shortcomings of his sense-perceptions,
and that an immense realm beyond that of the known stars remained to be explored.

Galileo turned next to Jupiter, and found around it four bright "stars"
in a line. He soon realised that these "stars" were travelling across the sky
with Jupiter, oscillating back and forth across the planet's bright disc. Every
cloudless night for two months Galileo noted the positions of these "stars" around
Jupiter--and what he saw (Figure 13) convinced him that here was a miniature

Solar System on the Copernican model:

"Since they are sometimes behind, sometimes before Jupiter, at
like distances and withdraw from this planet toward the East and
towards the West only within very narrow limits of divergence and since
they accompany this planet when its motion is retrograde and direct,
it can be a matter of doubt to no-one that they perform their revolu-

tions about this planet ... Moreover it may be detected that the
revolutions of the stars which describe the smallest circles around
Jupiter are the most rapid ... We have a notable and splendid argument

to remove the scruples of those who can tolerate the revolution of the
planets around the Sun in a Copernican system yet are so disturbed by
the motion of one Moon about the Earth ... that they consider that
this theory of the constitution of the Universe must be upset as
impossible".

If in later years Galileo had thought to test the validity of Kepler's
Laws of Planetary Motion within the satellite system of Jupiter he would have
confirmed that Jupiter exerted an influence on its satellites that was identi-
cal to that which Kepler said the Sun must exert on its family of planets.
Indeed, the above passage shows that Galileo had already noticed that Jupiter's
satellites moved as if in a miniature Copernican Solar System--the innermost
travelling fastest--but the detailed implications of his discovery escaped him.
It provided powerful evidence for multiple centres of motion in the Solar System,
however, and thus helped the Copernican model (in which the Moon moved around
Earth while Earth moved around the Sun) gain credence relative to the Ptolemaic

model, in which all motions had the same centre.
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7. Galileo's Anagrams

Galileo's discoveries had an immediate impact that Kepler's could not
have had. You did not have to be a skilled mathematician or an erudite scholar
to read and understand Galileo. He spoke in relatively simple terms of phenomena
which he could demonstrate, if necessary, to the senses of anyone who would
carefully view the skies through his telescope. Needless to say, evidence from
beyond the realm of human sense-perceptions was not immediately welcomed by all.
Some of Galileo's contemporaries regarded histelescopes with profound suspicion
——even considering that they might be the work of the devil because they couid
delude the human senses into seeing phenomena that contradicted the Aristotelian
geocentric world-view that was supported by the Church. Yet Galileo could use
a telescope to view the flag of a distant ship sailing into port and demonstrate
that it indeed identified the arriving vessel correctly--giving the telescope's
user an advantage in knowing which merchant to bargain with at the dockside
for the incoming cargo. There was an undeniable immediacy about Galileo's work,
both in the practicality of the instrument he used and in his manner of reporting
it

Galileo's astronomical instrument was unwieldly however and its magdi—
fication resulted in a severely limited field of view on the sky. Not everyone
who looked through it or similar devices saw the satellites of Jupiter as clearly
as he did. Their existence became a matter of controversy, into which Kepler
entered on Galileo's side, thereby adding his prestige as Imperial AstronoJer
to Galileo's discovery. In fact Kepler had few grounds for so doing, as he had
only rudimentary telescopes at Prague and thus no comparable observations of;his
own. Galileo might have been grateful to Kepler, given that Kepler was then‘in
a position more exalted than Galileo's own. Yet Galileo made up his mind to
accept Kepler's support without paying any real attention to Kepler's own id‘as.
Kepler had sent him copies of both the "Cosmic Mystery" and the "New Astronomy"
as they were published, hoping for Galileo's comments in return. Galileo answered
that he had read only the introduction to the "Mystery" and never answered the
second letter. He also ignored a letter from Kepler enclosing the latter's own
pamphlet supporting the contents of the "Starry Messenger'". It was only when
Kepler wrote yet again politely requesting to know who else had confirmed the
telescopic discoveries that Galileo deigned to reply, saying that future publi-

cations of his would elaborate on the matter and promising that he would soon
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send telescopes of his own making to his "friends". Evidently he did not count

Kepler among his "friends", for he never wrote to him again and never sent him

a telescope.

He did send, not to Kepler, but to the Emperor inPrague, a communication

which read: "SMATSMRMILMEPOETALEUMIBUNENUGITAURIAS", with instructions that it

might be conveyed to Kepler. Thus Kepler received Galileo's next telescopic
discovery as an anagram which he was required to decipher! Kepler solved it

"Salve umbistineum geminatum Martia proles"--"Hail, burning twin, offspring o

as

i

Mars". He concluded that Galileo had found two satellites of Mars. This fitted

Kepler's ideas of celestial symmetries--if Earth had one satellite (29) and
Jupiter four (22), then two (2!) was an appropriate number to accompany Mars|

Only three months later did he learn, via his Emperor, that the solution was

"Altissimum planetam tergeminum observavi'--"I have seen the highest planet in

triplet form". Galileo had seen Saturn's disc accompanied on each side by objects

whose form he could not quite make out, but definitely not a pair of moving

satellites. The phenomenon he had glimpsed was the "rings" of Saturn--yet

another departure from the perfect Aristotelian spheres and thus a further blow

to the Aristotelian world-view. Kepler was mortified that Galileo withheld
his discoveries from him in this fasion, and on receiving a second anagram
wrote to Galileo: '"not to withhold from us the solution for long. You must
see that you are dealing with honest Germans ... consider what embarrassment

your silence causes me."

Galileo's second anagram, whose solution Kepler received only indirectly,

announced his discovery of the phases of Venus. This was a strong argument
against the Ptolemaic system, for Venus showed the "full" phase when apparent
smallest (and hence most remote from Earth) and the "crescent" phase when

apparently biggest (and hence closest to Earth). This was consistent with

the Copernican picture (see Figure 14) but not with Ptolemy's, and so provided

1y

further evidence against the ancient views. The fact that both the Venus phases

and Jupiter's satellites could easily be accommodated in Tycho's system was
conveniently overlooked by Galileo.
By the end of 1610 Kepler had given up trying to persuade Galileo to

share his discoveries with him, and the two men pursued their careers without

any further direct interaction. At first sight Galileo's treatment of Kepler is

despicable--yet we must remember that Galileo was an articulate scholar who

published his discoveries with the minimum of excess verbal baggage required

to
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flatter his patrons, while Kepler's books were rambling mystical mazes in which

his Laws of Planetary Motion were deeply embedded. Galileo's reaction to Kepler's
. . s g . .

published work must have been one of total alienation. Galileo's guiding pr%nc1ple

was to believe only that which he had seen before his own eyes, and Kepler's

willingness to endorse Galileo's discovery of Jupiter's satellites without having

wm

seen them for himself may have earned him Galileo's scorn, however useful hi
support at the time. Kepler's pleas for a Galilean telescope may have reinforced
this. There is no evidence that Galileo ever took Kepler's ellipses seriously--

throughout his career he defended the Copernican system as Koppernigk himself had

left it, epicycles and all. To Kepler this must have seemed incredibly obtuse,

and contrary to Galileo's own principles--it was, after all, Tycho's observations

which had persuaded Kepler to discard the original Copernican system. After the
incident of the anagrams, Kepler resigned himself to proceeding without special
contact with Galileo.

Galileo's telescopic discoveries created an atmosphere of disbelief in
Aristotelian geocentrism throughout Europe which undoubtedly helped Kepler's
new view of the Solar System to gain acceptance in scholarly circles. To
this extent the one man's work assisted the other's. But a closer association
between the two might have led them to combine Galileo's insights into the nature
of motion with Kepler's solution to the planetary orbits. This combination yas
finally to clear the fog from the bridge so that Isaac Newton could walk confi-

dently across to produce a totally reformed science of physics and astronomy.

8. Galileo and the Motion of Falling Bodies

Galileo's attack on Aristotelian beliefs was not confined to his observations
of the heavenly objects; he also demonstrated by experiments that the Aristotelian

description of motions near Earth's surface left much to be desired. His work in

this area began the reformation of concepts of motion which was to be an essential

ingredient of the new world-view.

The difficulties encountered by the Aristotelians in explaining the motion
of a projectile, such as a Jjavelin or an arrow, were mentioned briefly earlier when
we discussed the rejection of Aristarchos' heliocentric views. The Greeks had
classified motions under two headings—--"natural" and "violent". "Natural" motions
resulted from the desire of heavy matter (the elements Earth and Water in the
Aristotelian scheme) to reach its "proper place"--the free fall of a stone drnopped

over a cliff was an example of "natural" motion. "Violent" motions resulted |from
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the expenditure of effort, or force, by Man or another animal. The motion of
cart pulled by an ox was a violent motion; the material of the cart, prevente
the road from getting any closer to its "proper place", would remain at rest
forced to roll along the road by a pull from the ox. Early axle bearings had

cient friction that the motion produced by the ox would soon cease if the ox

pulling. Thus a push or a pull--a force--was considered necessary to maintain

"violent" motion.

a

d by

unless
suffi-

stopped

The flight of a projectile was considered to be a combination of "natural"

and "violent" motions. The problem was to understand the nature of the force
supposedly maintained the sideways motion of the projectile once it had been
The eventual fall to ground required no force: this was the "natural" motion

from the wish of the projectile's material contents to be close to the Earth

which
launched.
arising

Aris-

toteliars supposed that some movement of the air through which the projectile |moved

supplied the force which maintained its "violent" sideways motion.

Galileo recognized the weakness of the Aristotelian doctrine at this|point.

The different rates of fall of, for example, a heavy metal ball and a leaf were

interpreted by Aristotelians as resulting from the greater desire of the ball

mass to seek its proper place. Well before Galileo became famous Simon Stevin

of Bruges had performed experiments in which balls of different weights were
fall together through distances of some ten metres onto a plank--the sounds o
impacts on the plank were used to mark the relative times of arrival of the d
balls. By 1605 it was well-known that such experiments showed the time of fa
to depend significantly on the weight of the ball, as Aristotelian theory sai
should. The famous story of Galileo dropping balls of differing weights from
parapet on the Leaning Tower of Pisa in order to demonstrate this is not subs
tiated by any reliable contemporary accounts, or even by any of Galileo's own
writings. The important point however is that Galileo was well aware of the

crepancy between the Aristotelian statement and direct observation. He also

tie

let

f the
ifferent
11 not

d it

a

tan-

dis-

(correctly) surmised that a metal ball fell faster than, e.g. a leaf because|of

the greater effect of air resistance on the fall of a light flat body than on
fall of a heavy compact one. This deficiency of the Aristotelian description

encouraged Galileo to consider the nature of motion more fully.

the

The Aristotelians had also supposed that a body descending by "natural'

motion fell at constant speed, as in Figure 15a, which represents descent at |a
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steady speed of two metres per second. It will be important in what follows to

make very careful statements about bodies in motion, so we will begin here to intro-
duce the precise language which we will ultimately use for the description of motion.
Suppose we describe the descent of a vertically falling body by noting its position

in space (s) at a variety of times (t) during its fall. The quantity s could be
measured in metres vertically downwards from the point at which the body was released,
and t could be measured in seconds from the instant at which it was released. The
motion in Figure 15a could then be represented either as a graph of s against t,

which would be a straight line (Figure 15b), or by the algebraic equation

s = 2t

which specifies the arithmetical rule for calculating s (in metres) at any given

time t (in seconds) when the steady rate of descent is 2 metres per second. Figure
15b and the equation are exactly equivalent; the equation could be used to calculate
a series of points along the graph, each of which would correspond to a different
stage in the fall of the body. According to the Aristotelians, bodies with different
weights should have fallen at different steady speeds—--as represented by the set of

graphs in Figure 15c. All possible graphs of this kind can be summarised in the

single equation
s = vt

where v symbolically represents the steady speed in metres per second (we use

1,1

v' in anticipation of the definition of veloecity, which is to follow). The
graphs in Figure 15c correspond to v = 1 metre per second, v = 2 metres per
second and v = 4 metres per second.

Scholars such as Nicolas Oresme at the University of Paris in 1330 had
concluded that the distance dropped by freely falling bodies does not in fact
increase linearly (i.e. as in a straight-line graph) with time-—that the equation
s = vt does not describe the observed motions. Galileo performed some ingenious
experiments to show the correct relationship. He argued that a ball rolling in a
straight groove down an inclined ramp descends vertically as if falling freely,
but with an added horizontal motion which slows down the phenomena and thus makes
them easier to measure than those of vertical free fall. By repeatedly letting
balls roll from rest down long ramps and using his own pulse as a "stopwatch',
Galileo established that the distance rolled, s, increased as the square of
the elapsed time, t, i.e. that
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s = kt?

where k was a constant which depended only on the angle of the ramp, not on the
weight of the ball. For a horizontal ramp (on which a bafifa%;rest would not move
at all), k = 0. Galileo found that the relation s = kt2 held for all non-horizontal
ramps, the value of k being greater the larger the angle of the ramp above the
horizontal (Fig. 16).

Now consider the graph of the relationship s = ktz, shown with k = 2 in
Figure 17a. It is not a straight line, but an upward-turning curve. After travelling
only 2 metres in the first second, the body travels a further 6 metres in the
second one, so the total distance travelled after two seconds is 8 metres. Figure
17Tb compares the graph of this motion with that corresponding to s = 2t. The
graphs cross at the value s = 2 metres, t = 1 second. Before t = 1 second, the
body moving according to the equation s = 2t2 travels less distance in any given
time--i.e. it travels at a slower speed--than the body moving according to s = 2t.
After t = 1 second, the body moving as s = 2t2 travels faster than the other,
Obviously the result that Galileo demonstrated amounts to the statement that balls
rolling down ramps (and by extrapolation freely falling bodies also) do not descend
at constant speed as expected by the Aristotelians, but that their speed increases

as they move--i.e. they are accelerating.

To help us describe Galileo's observation still more closely, we will now
become more precise in our use of the terms speed and acceleration. If we simply

defined

Distance Travelled _ s
Time Taken T

Speed v =

then the "speed" would not give unique information about the way in which the balls
rolled during Galileo's experiment. For example, after one second the ball rolling
so that s = 2t2 would travel the same total distance (2 metres) as one rolling so
that s = 2t. Are their "speeds" both 2 metres per second? In a sense they are,
because both arrive at the same place at the same time, but the one following s = 2t2
travels much further in the next second. All they have in common is their average

speed in the first second. If we compare their average speeds using the distances

travelled in the first half second, we find that the ball following s = 22
travelled only 1/2 metre in that 1/2 second, for an average speed of 1 metre per

second: a ball following s = 2t

(continued) ...
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would travel a full metre in that 1/2 second, for an average speed of 2 metres/
second. Similarly, over the first two seconds, the average speed for "s = 2t2"

is 8 metres in 2 seconds, or 4 metres per second, while that for "s = 2t" is |k
metres in 2 seconds, or 2 metres per second. Obviously the "average speed" does

not completely describe the s = 2t2 motion, precisely because that motion iglaccql-
erated. In a real descent the average speed depends on the time interval over which
we measure it. It is obvious though that the ball rolling down a ramp (or falling

freely) so that s = 2t2 has some definite speed at any given instant. The problem

is that this speed changes (here, increases) from one instant to the next. A useful
concept in this case might be a set of average speeds measured over a series of time
intervals each so short that the speed does not change significantly during it.
Consider Figure 18a, where we again show the graph of s = 212, Suppose that at

t = 1 second we measure the distance As (metres) travelled by the ball in a very
short time interval At (seconds). (We will always use the Greek symbol A--"delta"
--to denote a small change in a measured quantity.) Then if At is sufficiently
small, the distance As travelled during At by the ball rolling so that s = 2142

will be the same as that travelled in the same time by a ball rolling with
constant average speed: 1

v = ls

At

Indeed, if we make the time interval At small enough, then the curve of s = 2t2
could be closely approximated (Figure 18b) by a series of short straight-line
segments, on each of which the ball's speed was constant. The smaller we take At,
the smaller would be the short distance As described by each segment, and the closer
the sequence of linear segments would approximate the actual continuous graph of s
against t; hence the better the description of the actual motion. If we carTy this
to the limit of At approaching zero (symbolically, At - 0), and the number of

segments becoming very great, the approximation can be as good as we wish: This

concept is the basis of the precise definition of the "instantaneous velocity" at
any given moment as the value of the average speed during a time interval At around

that moment, in the limit At - 0. Symbolically, we write this as

Instantaneous velocity v = Limit ( As )
At
At~>0

The mathematical technique of calculus is a set of rules for assigning definite
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numerical values to such limits, once the relation between s and t is specified.
The fact that the instantaneous velocity at any instant is the slope (gradient)
of a graph of s against t at that value of t should be evident from Figure 18b.

Having made these definitions we can now state Galileo's deduction more

clearly--the instantaneous velocity of a falling body increases with time. But

according to what rule? Suppose at some instant t the instantaneous velocity is
v, and during the next short time interval At the instantaneous velocity increases
by an amount Av. Then by exact analogy to the procedure used to define instantaneous

velocity we can define an instantaneous acceleration, or rate of change of velocity:

a = Limit ( %E )
At->0

From now on we will make an abbreviation: we will consider the word
"instantaneous" to be implied whenever we speak of velocity and acceleration.
We will also consider the taking of limiting values appropriate to very small time
intervals to be implied, so that we can write, for example, the shorthand forms:
As Av

and a = —

VSN At

Some mathematical analysis convinced Galileo that his measurements could

be summarised in the following very simple way: the acceleration a of all balls

rolling down a ramp at a given angle was a constant, independent of the weight
of the ball. The numerical value of a depended only on the angle between the
ramp and the horizontal. (For a discussion of the mathematical basis of Galileo's

conclusion see Appendix 1.) From this, he extrapolated that bodies falling freely

to Earth--the "natural" motion of the Aristotelians--do not fall at constant velocity,

but with constant acceleration, the numerical value of the acceleration being

independent of the weight of the body. He stated this conclusion, together with

some further mathematical deductions which will not concern us, in a treatise
entitled "Discourses and Mathematical Demonstrations concerning Two New Sciences
Pertaining to Mechanics and Local Motions" which was published in 1638. The
description of this work as "new science" was no overstatement, for Galileo was
indeed in the process of setting the science of motion onto the new path, combining
careful observation and mathematical interpretation, which would lead to deeper

understanding both of the Solar System and of terrestrial phenomena.
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. 9. Galileo and the Motion of Projectiles

Galileo attacked the vexed question of the motion of projectiles on two
fronts—-experiment and theory. He carried out experiments to provide data on
the trajectory of an object which moved sideways and fell to the ground at tFe
same time. He knew, as a consequence of his analysis of motion under constant
acceleration (see Appendix 1), that a ball rolling down a ramp acquired a final
velocity proportional to the square root of the distance it had rolled. This
provided him with a means of launching projectiles at controlled velocities;L
his experimental arrangement is shown schematically in Figure 19. A small bronze
ball was rolled down the ramp, and deflected at the end so that it left the ﬁamp
moving as horizontally as possible. Galileo then measured the horizontal distance
from the end of the ramp to the point of the ball's impact on the floor (he
smeared the ball with ink to mark this) for a number of different starting posi—
tions of the ball on the ramp--corresponding to a number of different "launch
velocities". These measurements allowed him to check a theoretical calculation
which he first made in 1609 (the year of his telescope and Kepler's "New Astronomy"),

‘ predicting that the path of such a projectile should be a section of the curye

known as a parabola.

As early as the Sixth Century A.D. the philosopher John Philiponus had
argued that a thrown body had an attribute called "impetus'" which carried it
along sideways (without the need for any continuing "push" or "pull") while ﬁt
fell to the ground. This concept--that a piece of matter, once set in motio%,
tends to remain in motion--was a cornerstone of Galileo's discussion of the
parabolic path. His experiments with rolling bodies had indicated that the
constant acceleration in their motions was intimately associated with the vertical
part of their path. Not only had he observed that the acceleration was greater
the more nearly vertical the ramp, but also that the acceleration became zerp
(i.e. the velocity was constant) if the ramp was horizontal and the ball was

set in motion with a push. He correctly interpreted the slight slowing down of a

real ball in a real horizontal ramp as resulting from friction between the ball

and the ramp; experience with balls and ramps of different materials and of

different roughness had led him to recognise that some loss of Velocity was due

to imperfections in the experiments and to distinguish the effects of these fmper-
. fections from the more fundamental phenomena which he sought to understand.

He therefore made a theoretical analysis of the trajectory of a projectile by

assuming its motion to be the combination of two independent motions: a vertical
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fall in which the acceleration was constant, and a horizontal motion in which the

velocity was constant.
We can reproduce Galileo's analysis using Figure 20 to see how the problem
has to be described mathematically. In his experiment, he had arranged that| the
ball left the deflector at the bottom of the ramp travelling horizontally, and
with a known velocity, v. His interpretation of Philoponus' concept of "impetus"
was that the ball's subsequent motion in the horizontal direction would be such
that this horizontal velocity remained constant. If the horizontal distance

travelled by the ball in time t seconds after leaving the ramp was x metres (Fig.

20) then the horizontal part of the motion should be described by the equation:
X = vt

with v constant. He argued that the motion in the vertical direction would be a
free fall from rest (if the ball indeed had no downwards motion as it left the
deflector). He therefore expected that in the same time t the ball would have fallen

a distance y metres vertically (Fig. 20) where
¥y = kt?

and k was the constant appropriate for a pure vertical fall with constant accel-
eration (see Section 8 above and Appendix 1). It was then a simple matter to
express the horizontal distance travelled in terms of the corresponding vertical
drop, eliminating the time of fall (which could not be measured accurately

using Galileo's techniques). To do this, first rearrange

x = vt to the equivalent form t =

<%

and then substitute (x/v) for t in the equation describing the vertical motion:

2
y=kt2=k(§)2=.,k.}__

v2

Thus it was possible to predict that the vertical drop should increase
as the square of the horizontal distance travelled--which is the form of a para-
bola whose apex was at the end of the deflector. The equation also involves v2
--the square of the velocity of the ball as it leaves the deflector--which
Galileo could relate to the distance the ball had rolled down the ramp before

reaching the deflector. He could therefore make a detailed comparison of hi

(2]
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theory with his experiments, and was satisfied that, to within the uncertainties

associated with imperfections in the experiment, the theoretical analysis magtched

what he observed to occur in the real world.

This agreement provided powerful confirmation of Galileo's two starting

assumptions--1) that the vertical motion of a projectile has constant acceleration,

and 2) that the horizontal motion of a projectile has constant velocity. Th
second assumption amounted to a new conception of what the Greeks had termed

"violent" motion: it implied that a body, once set in motion, preserved its

)

velocity

in the absence of obvious external pushes and pulls. This attribute of matter,

its tendency to remain in motion at constant velocity, had been obscured in

Aristotle's time by the complications of friction. It was soon to be known as

the property of "inertia'.

10. Galileo's "Crime"

Galileo had made his critical studies of matter in motion during the

first

decade of the Seventeenth Century--the same decade that had witnessed the death of

Tycho, Kepler's "New Astronomy" and Galileo's own telescopic discoveries. Y

et the

"Discourses and Mathematical Demonstrations" in which he set down his conclusions

fully were not written until almost thirty years later. The intervening years were

not exactly idle however; they were spent in a spirited advocacy of Copernican

principles which had led to Galileo's arrest and confinement at his farm near

Arcetri, where he wrote the "Discourses'" during his last years.
Galileo's telescopic discoveries had convinced him of the falsity of

Aristotelian cosmology and, perhaps too readily, of the value of the Coperni

can

hypothesis which made the Earth a planet and, conversely, made the planets other

"worlds". His studies of motion convinced him--again perhaps too quickly--t]

the Aristotelian objections to Earth's motion were invalid. Having found that

matter when set in horizontal motion preserved its velocity without need of

continuing push or pull, he extrapolated (this time incorrectly) to the stat

that uniform circular motion might similarly be preserved. If this were true

then matter near the Earth's surface, once given the Earth's daily rotation ¥
retain that motion as it rose or fell; this would avoid the disruptive effects
and Westward drifts predicted by the Aristotelians if the Earth rotated from
West to East. Thus Galileo concluded, in effect, that Koppernigk had been cq

when he argued that circular motion required no forces.
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At this point Galileo unknowingly shut himself off from the final explana-

tion of the phenomena of the Solar System. His false conclusion made him so|ardent

an advocate of strict Copernicanism, with all its perfect circles and epicycles,

that he failed to appreciate the importance of Kepler's ellipses; even more

impor—

tant, he never became aware of Kepler's Third Law--the result, buried deeply|in

the "Harmony of the Worlds", which was the key that could unlock the secret

gravitation.

Galileo's belief in the Copernican system as a physical reality rather

than as a computational method was not concealed from his church. Indeed he

o f

tried to persuade theologians to reassess their discussions of certain Biblical

texts, so that interpretations of "God's word" would not conflict with obseryable

facts. He was a pious man who wished to restrain his church from unnecessary

conflict with the emerging sciences. But he was not a tactful man, nor did

he

suffer the opinions of others gladly if they conflicted with his own. By 1616 he

was in collision with influential Jesuits who denounced him before the Inquipition

for advocating heretical views. The issues in dispute are summarised in the| follow-

ing extract from a letter dated 12 April 1615 from Cardinal (later Saint) Roberto

Bellarmino, a powerful Jesuit, to Paolo Foscarini, a Carmelite monk who had

a discourse favouring the Copernican system:

"If there were a real proof that the Sun is in the centre of th
Universe, that the Earth is in the third heaven, and that the Sun do

not go around the Earth, then we should have to proceed with great
circumspection in explaining passages of Scripture which appear to

teach the contrary, and rather admit that we did not understand them
than declare an opinion to be false which is proved to be true. But

as for myself, I shall not believe such proofs until they are shown

written

[

bl

to me. Nor is it a proof that, if the Sun be supposed at the centre|of
the Universe and the Earth in the third heaven, everything works out|the

same as 1f it were the other way around. In case of doubt we ought

to abandon the interpretation of the sacred text as given by the holy

Fathers.

I may add that the man who wrote: 'The Earth abideth for ever;
the Sun also riseth, and the Sun goeth down, and hasteth to the plac
whence he arose, was Solomon, who not only spoke by divine inspiration
but was wise and learned above all others in human sciences and in the

not

11

knowledge of created things. As he had all this wisdom from God Himself,
it is not likely that he would have made a statement contrary to a truth,

either proven or capable of proof. If you tell me that Solomon speaks

according to the appearances, inasmuch as though the Sun seems to us|to

revolve, it is really the Earth that does so, just as when the poet

'"The shore is now receding from us', I can answer that, though it may

Says

appear to a voyager as if the shore were receding from the vessel on|which
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he stands rather than the vessel from the shore, yet he knows this to
an illusion and is able to correct it because he understands clearly
it is the ship that is in movement. But as to the Sun and the Earth
a wise man has no need to correct his judgement, for his experience

him plainly that the Earth is standing still and that his eyes are n

deceived when they report that the Sun, Moon and stars are in motion|

What impact could lunar mountain ranges, Jupiter's satellites, and c

be

that
2
tells
ot

onclu-

sions drawn from the motions of projectiles have against such a web of argument?

Bellarmino states that if there be alternative descriptions which will fit ¢t
appearances, then the alternative which is consistent with Scripture and wit
divine inspiration of such as Solomon must be accepted. He also refers to t
relativity of motion, and hence to a possibility of alternative descriptions
Galileo could not deny. Indeed Galileo's own analysis of the parabolic path
pended on the notion that relative to its uniform horizontal motion the proj
drops vertically as if from rest. And the astronomers themselves had offere
alternative descriptions of the planetary motions, e.g. Koppernigk's alterna
sets of epicycles, and Brahe's Earth-centred system (which with Kepler's ell
replacing the Copernican epicycles would have been an excellent representati
of the planetary motions). Unless Galileo could have proven that only a Sun
centred description could be valid, men such as Roberto Bellarmino would unh

tatingly abide by the wisdom of Solomon--and, both in their eyes and retrosp
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in ours, Galileo had no such proof. Kepler's "solar influence", his Third Law, and

Galileo's own concept of matter's tendency to preserve its velocity could ha
been combined to furnish proof (as we shall see below). But for all his oth
sights Galileo neither recognised the value of Kepler'swork, nor the correct
clusions to be drawn from his own observations of projectiles.

Without "proof" Galileo was perceived as basing his conclusions on t
"visions" he had had while viewing the skies through telescopes and on unwar
extrapolation from his terrestrial experiments--extrapolation which did not
prove that Koppernigk was correct, merely that he might not be blatantly inc
Viewed in these terms, Galileo's failure to convince the Jesuits to reinterp

the Scriptures is hardly surprising.
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In any event, on February 24, 1616, the "Qualifiers" of the Congregation

of the Holy Office, a committee of the Inquisition, declared the proposition
the Sun is the centre of the Universe to be "foolish and absurd, philosophic
and formally heretical, inasmuch as it expressly contradicts the doctrine of
Holy Scripture in many passages, both in their literal meaning and according

the general interpretation of the Fathers and Doctors". A similar declarati
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. was made concerning the proposition that the Earth moved or rotated. According
to the files of the Inquisition, Galileo was called before a small committee| on

February 26 at Bellarmino's palace in Rome and

"enjoined in the name of His Holiness the Pope and the whole Congregation
of the Holy Office to relinquish altogether the said opinion that the
Sun is in the centre of the Universe and immovable and that the Earth
moves; nor further to hold, teach, or defend it in any way whatsoever,
verbally or in writing; otherwise proceedings would be taken against
him by the Holy Office."

One week later, almost seventy-three years after Koppernigk's death,|his
"Book of Revolutions" was placed on the Index of forbidden books "until corrected".
The heavy-handedness of these decisions created much discontent among Catholic
intellectuals away from Rome, and undoubtedly stimulated interest in the confron-
tation which was to follow. One can imagine some copies of the Copernican treat-
ise being reread for the first time in many years in search of what they contained
that had been accepted for so long but which was now heretical.

Galileo "lay low" until August, 1623, when an intellectual friend of|his

. named Maffeo Barberini was elected Pope. Then he rejoiced in the belief that he

would at last be free to argue in favour of the Sun-centred system and to convince
the theologians to accommodate the new discoveries in their interpretation of the
Scriptures. Early in 1624 he travelled to Rome and had numerous audiences with
his former friend, now Pope Urban VIII. But although Barberini in 1616 had defended
Galileo, as Urban VIII he urged him to consider that God could organise the Universe
to present the observed appearances while leaving the Earth unmoved, and that to
assert otherwise would be tantamount to constraining God's infinite power within
the 1limits of Galileo's own ideas.

These conversations told Galileo that Maffeo Barberini was a changed | man.
Yet on December 2&, 1629 he announced what proved to be his most famous book) the
"Dialogue on the Great World Systems". Cast in the form of a four-day-long debate
among three intellectuals--Simplicio (an Aristotelian), Salviati (a surrogate
Galileo) and Sagredo (an unbiassed Venetian nobleman)--the "Dialogue" voiced|all
the arguments against the Copernican system through the inept character Simplicio,
to be refuted time and again by Salviati while Sagredo became more impressed Yet
at the very end of the book, in his last words Simplicio says in effect that God

' could manufacture a given appearance in many ways beyond the comprehension of the

human intellect, and Salviati quickly agrees that perhaps Man is not capable of

understanding God's infinite wisdom. Thus Galileo paid lip-service to the
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conclusion offered him by his Pope, but in a perfunctory and unsatisfactory

manner,

leaving little doubt as to the real conclusion to be drawn from the discussion.

Presumably Galileo thought that the Maffeo Barberini he had known would recognise

the validity of the dialogue while the Urban VIII Barberini had become would| be

mollified by its conclusion.

In fact the "Dialogue" was a splendidly unambiguous piece of Renaissance

literature which sold out as fast as it was printed. Its true impact was perceived

by all, including the theologians, and its perfunctory conclusion fooled nobpdy,

including the Inquisition. Galileo was summoned to come to Rome, where in April

1633 he was tried by the Inquisition for disobeying the injunction of 1616,

and

thus for heresy. On the morning of June 22, 1633, after some behind-the-scenes

negotiation over his sentence, he was pronounced guilty but absolved, on the

condition that he publicly recant his statements supporting the heliocentric| world-

view and the motions of the Earth. This the seventy-year-old Galileo did, on

his knees and clad in the white shirt of penitence, reciting a text agreed to

in advance and signing a written copy of the same words.

To have murmured the legendary '
at the end of the public ceremony would have been a reckless act from which
Galileo would have gained little, and the remark is likely apocryphal. But

spending the rest of his life under house arrest as part of his sentence he

the far more effective "murmurs" of his "Discourses", in which he outlined his

. . 1
'eppur si muove"--"but it does move'-

while

made

theories of motion in full detail. By the time of his death in 1642 the hollowness

of his recantation was clear to the intellectual world. The main effect of

prohibition of his and Koppernigk's books was to move the principal theatre

progress in understanding the Solar System from Catholic Europe to Protestant

England, where the final pieces of the puzzle were assembled by the members

the Royal Society for the Promotion of Natural Knowledge.
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