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Apstract from Lindsay and Margenau

NOTES ON QUANTUM MECHANICS Alsn Bridle

Any object of physical enquiry which, in classical physics, is thought of as
an entity as distinct from a mere property, will be termed a PHYSICAL SYSTEM. Such
objects may be capable of direct observation (large-scale bodies, measuring devices,
light-sources, etc.) or may indicate their presumed existence by a sequence of
inferences based upon direct observations (molecules, atoms, photons, etc.)

With a system are associated a number of properties capabie of me asurement,
such as position, energy, momentum, and the like. These will be called OBSERVABLES,
although this is not intended to imply that they are observable directly. Every
measurement of an observable yields a number. In classical physics this number was
assigned to the observable as its only characterisation and referred to as its
magnitude. Hence the notion of. an observable was relatively unimportant because it was
synonymous with the result of observatiom. In gquantum mechanics we accord to this
notion a more independent character inasmuch as we shall associate it with a more
general construct (an operator) which determines numbers, but not a single number. The
relation between these numbers and the results of measurements performed on an
observable will form the subject of a later discussion.

We now define the state of a hysical system. Classical physics used several
unrelated definitions of state, the principal one being the designation of all momenta
and all co-ordinates of the particles composing the system, amounting to an enumeration
of 2s numbers, if the system has s degrees of freedom. In our present definition we
renounce all attempts of defining the configuration of parts and teke a function @ of
the s co-ordinates as representing the stabe. In gquantum mechanics the state of a
system is thus no louger defined by a number of variables having an imuediate intuitive
appeal and recalling exact configurations of constituent parts; it is simply a function
in configuration spaces.

The laws of physics in general connect states; in quantum mechanics they will be
laws connecting @-functions at different instants of time.

The independent variables which @ contains as arguments are the co-ordinates
defining the degrees of frecdom of the system. This number of degrees of freedom must
be considered as arrived at by trial and error, without reference-to the ideas of
classical mechanics. They will naturally in general turn out to be the degrees of
freedom of classical mechauics, but need not be regarded as such from an axiomatic
point of view.

We now postulate some restrictions upon the nature of the @-functions. @, which
may in general be a complex function (#* denotes its complex conjugate), must be
guadratically integrable, so thatn

u @*ar exists. (A)

This integration is to be extended over the fundamental domain of all the
variables of which @ is a function. dT, therefore, represents the element of
configuration space. If the fundamental domain of any of the variables extends to
infinity, (A) implies in general that @ should vainsh at infinity in a suitable
manner., (Funciions which do not vanish at infinity but have an integrable square have
hitherto played no part in quantum mechanics). Condition (A), although necessary, is
not always sufficient. The second condition must be

@ is single-valued. (B)
Cases in which this condition is important arise whenever one of the variables

in @ is an angle, for then (B) requires that g(2m+f) = #(p).
A notuon which proves very useful in guantum mechanical discussions is that of
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an operator, or a mathematical operation represented by a characteristic symbol.

We must now set up the relationship between states and experience. We begin by
asserting that to every observable p there corresponds an operator P. In order to ascertain
the correct operator which is to be associated with a given observable we must rely on
trial. One of the principal concerns for the new discipline is to develop operators for
all physical observables. The table which follows gives an assignment which is sufficient
for the solution of many physical problems.
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By Qe is meant any Cartesian co-ordinate g; by Py is meant the associated
momentum. 3 =
When it is necessary to express a momentum opezator or a combination of

momentum operators in some other system of co-ordinates (e.g. polar co-ordinates) it is
best to write the combination first in its Cartesian form and then to transform the
diefferential expression in the usual manner. denotes the observable "angular momentum".
One remark should be made in connexion with the observable "energy". H(p,q), the energy

in its Hamiltonian form, is usually simply (kinetic + potential). This is not Lorentz-
invariant, but it is easy to find a classical form which satisfies relativity rejuirements.
The computation of thecorresponding invariant operator, however, does not proceed by the
rules outlined above.

In classical mechanics g, and D, are known as canonically conjugate variables.
The corresponding operators obey
B
27,

These operators are said to be canonically conjugate operators, and the same
term is applied to all operators with this property.

It is not true that every observable has its own unique operator. The form '
of the operator will in general also depend on tie nature of the system in question.
Thus the energy operatwr for a single point mass M not subject to forces is

n°_ 2
- '-—-_-.V
87£2M
If it has a potential energy of the form V(x,y,z), this term has to be added

(unmodified becasue the operator for a co=-ordinate is simply the co-ordinate itself) ; the

energy operator for two mass-points Ml and M2 is

B = QP =

2 3 H
B a1 o2 3. :
MR S SR V(X o5 0 8. 3 Xes ¥ i B )
= a7l b4 ? ? ¢ 3 H b
8n2i§ ﬂl i M2 2 : kS o ol
where Vi is the Lapaacian involving the co-ordinates of the first mass-point, and Vg

contains those of the second.
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The postulate of p-P correspondence is the first of our postulates, and will
be denoted as (I).

Postulate (II) is that the only possible valueswhich a measurement of the
observable p can yield are the eigenvalues Py of the equation

wa - pxwx , Where wx satisfies (A) and (B).

If P is a differential operator, then this is a differential equation. Such
an equation has solutions for any value of p, so that it alone cannot be instrumental
in selecting a certain set. It can only do this if boundary conditions have to be
satisified.

The correspondence of this postulate to the facts can be decided only on the
basis of experiment. The spectrum of eigenvalues generated by (II) has always been
found to be the one observed.

The functions V¥, are the eigenfunctions of the operator P and define states
as described previously.  The states to which they refer are called eigenstates. We
anticipate two mathematical properties of these V,, to be proved for special cases
later on. These are '

(1) Orthogonality waxiﬁp.dm =0, if A A}
(2) Completeness @ == :E;axwx where the ax are constants.
A

To be precise, it must be added that orthoganality as given above may break
down when there is more than one eigenfunction V¥, belonging to the same eigenvalue Py
(degeneracy). Even then it is possible to make these functions orthogonal by
choosing linear combinations, so that the generality of the idea is not impaired.

A few examples of physically useful operator equations and their solutions «
are given below:

a) Let P in (II) represent the operator x. The resulting equation then represents the
results of possible x-co-ordinate measurements performed on the system, which might be
a charged particle, for example. We then have an algebraic equation (II) whose form

e X K(X) = wax(x), where BK is a number.

The solution is obvious if we write (II) as (x - BK)WK(X) = 0. The first
factor is difrerent from zero if x # Bk’ S0 WR(X) must be equal to O unless x = BX'
At this point it may assume any value. The construct in gquestion is Dirac's S-function,

and while it is an improper function, we can deline it accurately as

8(q) = 0 if 92 0, &g = &(-q), and |8(a)dg = 1

LY

. The last relation amounts to a definition of the value of the function‘at
q=0. If we identify the argument q of 8 with (X—Bx), we have what is equivalent to the
eigenfunction of P, corresponding to the eigenvalue BX’ Viz.

‘l’)\ = 6(.’& = 6)\)

The eigenvalues BX are in no way restricted, WX satisfies (A) and (B), and so

we conclude that any value of x is observable: the operator has a continuous spectrum.
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b) . The eigenvalues of the linear momentum operator Px are given by the operator equation

_h_dh _
. = P

This has the solution WK = constant.exp.2 ‘X §
To determine the possible values of p, it is necessary to consider the
fundamental range of x. Let this be the domain (=L,L) . Conditions (A) and (B) then

merely require that

wax.dx = 2.‘constant\2.L

shall exist, and this is evidently true if both L and the constant are finite.
Hence we again find that all values of p, may occur.

c). The eigenvalues of the angular momentum operator. These, for a classical rotation
of a mass-point in the xy=-plane, are given by the equation .

Bi 0 0y _onw
oniit oy T YrexitA T ™A

If we introduce polar co-ordinates, putting x = r.cos@, y = r.sine, we have
%5 = —r.sin@.%z + r.cosg.%§ = x-%; - y.%;

The equation is then an dG k mxm

It has the solution ¢K = constant.exp?ggi.mkg

Although any value of my will cause WA to satisfy (A), for (B) we now require

esbene

(9) (2% + 0)

N

=[8
=
..i‘.lt
I
-

Hence expgg%i.mkg = exp§

mx(e + 2%)., so that exp

This can only be true if m, = hk, where A is an integer. This is simply the

Bohr condition for the angular momentum of an electron.

d). The eigenvalues of the energy operator. These are given by the equation

=R
Owing to the difference in the structure of this operator the equation takes on a.
variety of forms depending on the nature of th€ system to which H refers. Usually, however,
it will be a second-order egquation in which the Laplacian figures, and the type of equation
is generally referred to as Schr8dinger's Equation. The detailed solution of special forms
of Schr8dinger's equation will be entered into later.
At this Jjuncture the remaining fundamental postulate will be given.
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This is that, when a given system is in a state @, the expected mean of a
sequence of measurements on the observable p is

= * odT
__ oo
Sﬁ‘ﬁ.dT s where P is the operator corresponding to P.

It is implied that measurements of p form a probability aggregate, the
multiple repetition of the measurement involved in this idea occurring in either space
or time; in the first case it (p) is the mean of the numerical results of a great
number of observations conducted simultaneously on similar systems in the same state,
in the second it is the mean of a great number of experiments on the same system in the
state in question. liost physical measurements explained by quantum mechanics are of the
first type, so that p is practically always understood in the sense of an average over
the results of simultaneous observations. Postulate (III) mey be called the "mean
value relation", this terminology being suggested by its formal resemblance to the
usual expression for an expected mean. (III) implies further conditions on state-

‘ functions; we now have a criterion for examining @-functions as to their suitability
for any particular physical problem at hand. If we want to express a state with a finite
energy, or a finite momentum, we must choose state-functions for which not only.S¢*¢.dT,
but also J P*HP.AT, etc. exist.

Postulate (III), which alone forms the connexion belween observable quantities
and state-functions, allows an interesting conclusion. If @ were multiplied by any
constant, the value of p would be uncuanged. Hence @ is arbitrary to within a constant
multiplier. We may therefore choose the constant to make condition (A) become:

(111).

j‘ﬂ*ﬂ.(ﬂ‘ = 1
(III) then takes the form:
5 =5¢‘m -dT

Henceforth every @-function will be assumed to be normalised in this way. The
condition (A) may then be combined with the orthogonality relation in the form:

- S\‘i’i\!fu.dﬂ? = %

' It will be observed that this procedure has not yet removed all arbitrariness
from the choice of @'s. We are still entitled to multiply # by any constant factor
exp(ie), so that state-functions differeing from one another by a constant of absolute
value unity are therefore empirically indistinguishable.

Some Useful Theorems

1). The formal "mean" of the operator P, vizngﬁ*Pﬁ.dT,Nis quivalent to an .
average over all possible eigeuvalues of P with weights depending upon the function
@ (i.e. the state of the system).

= §

4 : I i £ i rator
Proof:- Expand § as § =% ax¢x, and choose WK to be an eigenfunction of the ope
in question, so that PWK = PKWX .

-

N




e = o

Then we have: kgbﬁfﬁ dT S:gSa .P. a W AT = 4;4 Y P@'.dm.a;a
M [ M

Now, the integral reduces to Py when A = U, otherwise 1t is zero, as the ¥ are orthogonal.
There thus remains a single sum instead of a double sum, and we haves

- P
P =\[é$f¢.dm = :E:axax.px, thus proving the theorem.
A

This result suggests an interesting consequence: can we regard the positive
coefficients aﬁax as defining the fregquencies with which the various possible values Py

occur in our measurements ? This is not an obvious consequence of the above and (III),
for there are many difierent ways of choosing these coeflicients, but only one set can
deiine the true probability distribution.

. i e 2 - W Ll = 2
2). The coefficients \a,)\‘ define the probability distribution of the Py

Proofs~- Suppose the set of numbers Wy defines the true probability distribution of
the p}\'s Then we have: ‘ :

- e =
ZW?\ =1, ZW?\P?\ = D,y ZWXPK =P
On the other hand, we know that s;:ax =1, as 1 = Qfﬁ*ﬁ dT by the normalisation condition.

j -2 [,
=K§Zaﬁp%

Furthermore, Pr =§¢*Prﬁ .aT, mx.ﬁ:a%% Pr\if.)\ = P(r—l)(w)\) = Pr"'l Py 17\

R A

7\
p?\Pr-Z‘f’x, ete.

T @
=B
Hence by expandlng ¢ n SE}*P P.d7 in terms of the \if and then making use of the above

we have that p §h Py ° (ii) . Oncombining (i) and (ii), we have the system of
equations: \XJ( aN 7\)jp;f\ 28 P ly2s5icvin

The Py here are zXKkK given real ﬂumbers, all different. If these equations are to be
true, either all the differences o= % all vanish, or A(p?\) vanishes. This

b 12
determinant certainly does not ia the general case, hence: W = \a,m

| [y l
Corollary:- W, = ; Aﬁ ar
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This corollary follows by writing @ =;;laiwi, which defines the a; (called
i
coefficients of the development of @ in the system of V's. We then have

j‘f;\ «aT =§§W;ai¢’i.dT = éi\'aiéik = a.}\

We are now in a position to calculate the relative frequency with which a given
eigenvalue of any observable will be measured when a great number of measurements are
made, provided we know the state @ of the system. For this purpose we either expand
@ in terms of the eigenstates of the observable, pick out the coefficient belonging to
the eigenvalue in question, and square its absolute value, or we perform the integration
in the corollary (which gives the customary formula for the development coefficients
of & function @ in an orthonormal system Wx).

3) The probability (relative frequency) of finding the system, which is in the
i i i £ :
state ¢(ql,2,...s) at the point (51’2’,,.3) is given by @ (61,2,...s)¢(61,2,...s)'
Proof: We have shown that the eigenstates belonging to the co-ordinate operator x have
the form &(x=f,), where the eigenvalues P, have a continuous distribution. By a
generalisation of the argument leading to this we find that the eigenfunctions
belonging to the operator (ql > s) corresponding to the observable "simultaneous
BT REXE]

occupation of the points 4 0 > (s being the number of degrees of freedom), are
’ ,..

simply products of &=functions, viz.
6(ql-BlX)06(q2-62k)-oo-od(qs-BSK)

The eigenvalues B., form again a continuous distribution. Referring now to one
particular A, so that the™ index A can be omitted, meaning by B, some fixed value of
dys and by 62 some fixed value of dps etc, the probability we want is (from (2)

and its corollary),
S 2
\Jﬁ(ql,z, L) Oag =B )8(ap=Bs) oo e o B(a =B )da, day e e eda |

= ¢*(Bl 2, s)ﬂ(ﬁl’z’ S), which proves the theorem.
b} LR N J IR N R ]

In particular, if @ is the state of a single particle and therefore only a
function of x,y,z , @*@ is the probability that the particle be found at the point
X,¥,2 of ordinary space. Hence it is permissible in this simple case to ?hink of the
square of the state function as the distribution of mass, or if the partlc}e be an
electron, the distribution of charge i: space. This simple interpretation is not
however applicable, and is, in view of (I11), a very special idea which does not
exhaust the meaning of a @-function.

4) Certainty of measuring the eigenvalue Py exists if and only if the state

. . i . .
function 4 = e k? where U is a real constant.

This is almost obvious, for if certainty is to exist, there can only.be one
ay different from zero, namely a9 and this must have an absolute value unity. The
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above is the only @-function which satisfies this requirement. This fact throws gp
interesting light upon eigenfunctions. They characterise states which yield certaingy
with regard to the outcome of at least one kind of measurement, that of the observable
of which the state is an eigenstate. In the preceding discussion the latter have been
denoted by V, while any state in general was denoted by @. This usage of letters will be
continued wherever feasible, but it should be remarked that there is no real distinction
between states and eigenstates. Presumably every @ is an eigenstate of some operator,
although it may be diiTicult (or perhaps impossible) to find it, or the operator may not
ve of physical interest. When we say that a state is an eigenstate of some operator, we
mean that we know, and are interested in, this operator.

Suppose that a physical system is in an eigenstate belonging to one observable,
say the energy; will it then be true, also, that some other observable, like the position
of the system, will yield one definite value without spread on measurement 9 This is
indeed possible, but only under a rather special condition.

5) If P and Q are permutable operators, the eigenstates belonging to P and Q are
simultaneous eigenstates; that is, if the state of the system is such that a value ©
p; will be measured with certaintyy; then one value q. will also be measured with
certainty. J

Proof:- Let the eigenstates of P be denoted by WPA’ thoserof Q by WQP. We then know

that the following eyuations are satisfied by hypothesis.

(a) PWPK = pkaK (b) QWQP = qudp_ ’(c) PQ = QP

The state function is one of the WPK’ say WPi' Then, because of (c¢) and (a),
QPIDPi_: Y,PQ‘IfPi = piQ\IfPi
If we write the last two members of this equation in the form
it simply tells us that thi is an eigenfunction of the operator P, namely
that belonging to the i'th eigenstate. In other words, QWPi = constant.wpi. Comparing
this with (b), we are forced to ideniify wPi with one of the %Q“'s, say V 5o end the

Q
constant with q;. Henoe wPi = ij' If we now apply the mean value relation to find

the observed value of the q observable,

% R
q = IIfPinlfPi.dT = IijQ\XfQj A7 = a;

i.e., the value qj is measured with certainty. The opposite case, in which P

and @ are not permutable,is also of interest. The above proof cannot then be conducted,
and we infer that uncertainty of measurement for one observable will in general imply
uncertainty of measurement for the other. In fact, the present formalism permits an
answer 1o the more general question : for any given state @, how is the precision in the
measurement of one observable related to the precision in the measurements of the other ?
By precision we here mean a measure of the smallness ol the range over which the various
measuremnents are scattered. We shall here discuss this guestion as it regards two
canonically conjugate observables, i.e. those whose corresponding operators are
canonically conjugate.
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For our present purpose we shall take the statistical dispersion of the
measurements as a measure of the reciprocal precision, i.e. the uncertainty, so that
the uncertainty in p is

(8p)% = (p - 5)°

6). If P and Q are canonically coujugate operators, tnen'(Ap)z. (Aq)2 ;> —_—

Proof:- We shall need to assume tuat P and Q satisfy the relations
[8e2g.ar = [(erprrp.an
[#eag.ar = [(@sge)guar it ¢ satisties (4) ana (3).

We first proceed to establish the ineguality

Ju*u.d’l‘ . [v*v.df[‘ E %}; (u*v + v*u) .dTJ s

where u and v are any integrable functions of thuse co-ordinates on which the
state-function for the system depends. This is done as follows: let A be a real
variable not depending on tie co-ordinates. Then

\Y(Au +v)(Aa* + v*).dT is always positive or zero, the latter only

for the trivial case where w is directly proportional to v, which we are here excluding.
. 2 . * : :> P .

Hernce A | u*u.dT + N(u*v + v*u).dT + |VW¥v.dT 0 for every real A

Consider the l.he.s. as a quadratic form in A. We know that it can have no real roots.

2 2 . : . "
But the roots of aA\” + b\ + ¢ are real unless 4ac®b , whence we arrive immediately at

the required inequality.

Now suppose that the system is in the state @. If we then define
w= (P - p)f, v=1i(Q - g,

the ineqpality reads:

j(P - 5‘)*95*(13 - 5);6.@1*&('4 - Q#*p*(Q - q)8.aT

ir.f. - . = N
> Z_iI(P - D)*¥F*(Q - q)g.aT - i

w

R

(Q-4)**(p-5)g .az | >

Using now the first two relations, and cancelling terms on the right,

jﬁ*(? - 9. | (@ - D%.ar > - %{kgﬁ*(m s QP)¢‘dT¢2

* B 2
Now @*(P - §)z.dT is eguivalent to Eg?akax(ph - p)¢ (Th.l), and as Th.2 tells us that
AT 0

the aiak are probabilitied, it is precisely what we mean by the uncertainty in p-.
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We have therefore arrived at the statement:

(4. ()% 2 - %mﬁ*(m - QP){é-dT}Z

‘This i5 & theorem of great importance, more gemeral indeed than the one we set out to
derive. It contains (5) as a special case, for if P and Q are permutable, the r.ie.s.
vanishes, and it is possible for the two uncertainties to be zero.

If P and Q are operators belonging to cancnically conjugate observables, like position and
momentum, we have

R - 1¢7) N - B
P QP¢“2ni'aq -9 59q = 7

The relation derived above then becomes

2
(Ap)2 . (Aq)2 > __fl_z_ , as was required.

7 16n "’

Hermitean Qperators

" p
An operator P is Hermitean if iu*(Pv) «dT = |(P*u*)v.dT. A real operator is thus

. 3 . . . : > . = N - L - . 3 u ]
Hermitean if its position inside the integral is immaterial. The importance of such
operators lies in their having real eigenvalues. To prove tuis, let u be one of the

eigenfunctions of P, so that u = \ifk, P’d!k = pkwk’ P*\!fi = pf{lll;.

We then have, expanding v in terms of the ¥'s (u and v satisfying the same
boundary conditions by hypothesis),

ju*(Pv) AP = jl!fﬁpéal\bx.dw = ap
S(P*u*)v.d‘f = S(P*\I”f() %aﬁf}\.dﬂ} = a,pf

If the two results are to be equal, i.e. if P be Hermitean, then the .
eigenvalues p, must all be real, for k may be any of the M's. Since eigenvalues must
represent the results of measurements, which must be real, we are safe in physics if we
adunit only Hermitean opergtors.

The position and momentum operators introduced already are simply demonstrable to
be Hermitean. Regarding the energy operator, we have, for a system with f degreed of freedom
that £

o giﬂx +* Ve, L)
where H h2 62
11 — s

A 27[.‘111)\ dq%

),
Then Su*Hv.dT =Z, u*H)\v.dT i gu*Vv.d.T
A

v

2 (£) 3
s A h o
Wiriting each term of the sum explicitly, Yu*Hxv.dT = = g;z_' ( g \u* a_'% dqldqz,.,,dq_f
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on perIorman a partlal integration over q, this becomes.

(£-1)
\y kg u 7y ] dqldqz...dqx ldqh l...dqf + 5\ \ggu* gv 4aT
" an m, g m, 9, O

The first integral vanishes. If we perform another similar partial integration with
respect to ) in the second, the remaining term takes the form:

h2 (f) 02 '
e~ 2 N 2-V dqldqz....dqf

8n oy qu

This is (Hﬁu*)v.dT andso we have demonstrated the Hermitean character of each term in

the sum. As V is real ana contains no differentiations, it is certainly Hermitean.
Therefore rU*Hv dT = (H*u*)v.dT ;(Hu*)v.dT

The class of operators under dlSCHbSlOH has another interesting property. The eigen-
functions belonging to different eigenvalues of a Hermitean operator are orthogonal.
Let Py and Py be two different cigenvalues of the operator P in question.Then:

P‘J’ = pl‘lfl
Hence((W*PW AT = plgw = 4T,
Also, PWK = ka and PEWk = kWi, since p, is real, hence:

pr P*W*.dT = P, llf*llfl.dT

But P being Hermitean, jv P*\lf* AT = 5\1!*9\1! AT = pll‘w #U_.dT, so that:

= AU
plj .dT pkj‘lf aT

Since by nypothesis, p; # P, it is evident that ijin.dT =0

The prooi breaks down if two eigenvalues are equal, i.e. in the case of degeneracy.
That is not, however, a serious matter, for it is then possible to take linear
combinations of the non-orthogonal functions, thereby producing orthogonal ones. These
new orihogonal functions are eigenfunctions in as proper a sense as the old, for they
satisfy the operator equation with the eigenvalue to which the old ones referred, the
equation being linear. The orthogonalisation can be carried out conveniently by
Schmidt's orthogonalisation process. The results of this process are not unique, and
there are in general many different orthogonal linear combinations, all of which can
be regarded as proper eigenfunctions belonging to a degenerate eigenvalue of P.

Special Forms of Schr#dinger's Egquation.

Since the energy of a physical system is a matter of great concern in many
problems, we shall do well to consider in some detail the various com.on types of
differential equation which the energy operator generates, all of which are of the
gtandard form

H\JJ?\= Ex\b}\
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a). The simplest example is that of a freely-moving mass point. Let its constant
potential energy in the refion in which it moves be V. The point has three degrees of
Ifreedom, hence the Schr8dinger equation becomes:

5 A
B v = EV, omitting the subseripts-on ¥ and E.
8T
s 2 .\ 81N , —_ 2% - .
Writing k= = (L‘V)"'ZE" we see that k corresponds to e times the classical momentum
h

of the particle. We then have VZW 4 kZW = 0, which can be solved at once by writing

V as a product X(x).Y(y).Z(z). Substituting for ¥ and dividing through by it, we get:

Xll Yll Z“ 2
X Yty *tz ot kW =0

Since, except for the constant, each of the terms in this equation depends upon one

independent variable wnich does not oc.our in the others, each term must be separately

constant. Hence, denoting these constants by

i 2 2 2 . . ; ‘l’
-kl, -k2, -k3 respectively, we obtain the solutions:

X = Alexp(lklx) + Blexp(-lklx), Y = Azexp(lkzy) + B2.exp(-ik2y), etc.

The A's and B's are any constants compatible with the boundary conditions. The next
question is : what are the boundary coanditions ? Let us first assume that the fundamental
range of (x,y,z) covers all space. It is then necessary to satisfy condition (4).
Condition (B) is automatically satisfied.

It will however at once be seen that it is impossible to satisfy (A) without making all
A's and B's zero. Tuis corresponds to an eigenfunction which vanishes everywhere. '
According to The3, the particle would have no probability of being detected anywhere. We
shall return to this situation later.

Another possibility is that the particle is, classically speaking, somewhere in the
range (O,ll), (0,12), (0,13), and that it has a zero probability of being found at the
boundaries or this parallelepiped. In view of Th.3, V¥ must then vanish at the
boundaries, which is only possible if U vanishes there. If we impose this condition we

SR hes ki = nﬂ;/li, where n is an integer which will not .
be the same for all three ki. This fixes the energies of the problem, and they are:-
2 2 2 / \2
h 2 - 2 h 11\ (n [ ;)
E -V=—"— (k] +k; +k) = —L{-—l +‘—27+‘L—3.
(nl,nz,nB) Snzﬁ 1 2 3 8K Elll ~L}2‘ \lﬁ,
To every choice of the three Entegers (nl,nz,nB) there corresponds an eigenfunction
v = c.sin’1”,.sin 22" .sinféfz
192y 0 1 i i

1 a 5

The constant ¢ is determined by integrating Ul over all space and setting the result
equal to unity. The result is

3
c = (8/111213)% = (8/v)®, where v is the volume of the

parallelepiped. We see that the energy values form a denumerable set; they are discrete.

To every triple set of numbers there corresponds an "energy lebel" of the system. TQ
some sets of numbers there corresponds the same energy value. The states thus described

are "degenerate".
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If we increase 11,12,15, that is, the volume of the space in which the

particle is confined, two things happen: the separation between the possible energies
decreases, and the constant ¢ becomes smaller. In the limit of an infinite volume, we
achieve a continuous spectrum as nearly as we please, and c approaches zero as nearly
as we please. This case is evidently that discussed before, but now we see the true nature
of the problem. The energy spectrum becomes continuous, but the state-function becomes
incapable of normalisation. This problem is a very general one in quantum mechanics.

How, then are we to deal with continuous ranges of eigenfunctions ? The
first possihility is to make (A) less stringent or replace it by a different condition
in the case of continuous eigenvalues. We can, for instance, normalise the eigenfunction
belonging to an infinitesimal range of eigenvalues instead of the one belonging to a
single eigenvalue. This I8 the usual procedure and is the only one applicable in the
numerical solution of physical problems. The other, logically perhap: more satisfactory,
is to treat the problem as though the system were confined. The energy eigenvalues will
then be discrete. The continuous spectrum will appear as the result of a limiting process
in thich the range of the fundamental variables approaches infinity. This does no
violence to the physical situation since we can approximate to the actual condition as
closely as desired, and, furthermore, no physical sysytem moves, strictly speaking, in
an infinite space.

As a final observation on the problem of the free mass point we add the
following remarks: the V-function is a triply sinusoidal relation. If we wish to complete
the time pic ture of a wave we are at liberty to multiply by exp(iwt) for as we have
seen, multiplication of the state-function by a constant (in space) of absolute value
unity does not alter the state. If the wave is supposed to move entirely in the x
direction kl = k = 2mp/h, which gives de Broglie's relat.on as kA = 27.

b) As a second example we consider the problem of finding the allowed energies
of a system classically described as a rotator. The Hamiltonian of such a system, e.g.
a dumb-bell having a moment of inertia I and rotating with angular momentum m_ aboutb
the z-axis, has the form m2 *

H = _z, since there is no potential energy. If in this

expression we replace m, by its opeiinor — - yg— ot where 6 is the
2ni|\“oy ox 271 “00 ? 5> o
longitudinal angle about the z-axis, the energy operator is seen to be H = ﬁhz éL—-
8n I 69

We are ascribing to the system only one degree of freedom, as is seen irom the fact
that the energy operator affects only one variable, 6. Schr8dinger's equation is now

&
dz\" + k¥ = 0, with k° = B“ZI.E
dQ h
It has the solution V = Aelke + Be-lkg. Condition (B) demands that k = n, an integer,
so that the possible energies are 202
E = o
81T

This prediction is not verified. The system which should exhibit these energy levels,
the diatomic molecule, does not do so. Instead it has energies arranged according to
the law obtained by replacing n2 with n(n+l) in the above. The reason from which this
stems is that we have not assigned to the system a sufficient number of degrees of
freedom. f§e shall therefore now work out the problem by ascribing it two instead of one.
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We shall now first write the complete Hamiltonian in Cartesian form, so that Schr8dinger's

equation Dbecomess
8

h2

On transforming to spherigal co-ordinates and then putting r = a = eonstant, there results:

. ) a
I - 9% |
—E i -1-2.9-—% + cotl. 32.31—1’ + @"%—.Exb =0
a"sin"6 of a“~ 08 a~ 08 h

We now repeat essén%;ally the procedure used before. Assuming ¥ to be a product of two
functions 6(6) and @(@), we substitute in the above and divide by V. Then, on multiplying
by a2sin29, the equation assumes the form:

Zn 5 an G
— + sin"@. — + sin(8)cos(8). — + E.sinze =0
e e
2
In this equation § is defined as §EE%§—.E
h ®

For an acceptable function Q, the first term must be representable as = = m2, where m

is real and constant. Single-valuedness requires that w als. be an integer.

If this is then substituted into the equation for Q, we have the equation for the
"associated Legendre function". The eigenvalues of this give E = n(n+l), and these 8
eigenvalues turn out to be independent of the value of m. Because of the definition of E,

this means that: 2
En = E&Hi%ﬂ&_ s Since I = ﬂaz.
SYIN

| : - : m imf -1
The complete eigenfunctions are: V¥ = const.Pn(cosG)(Ae ¢ + Be mﬁ)
oy P . ; ; i . .
The definition oI Pn(oose) shows that the value of m cannot be greater than n, nor can it
be negative.
These examples illustrate the detailed manner of solving Schr8dinger's Equation. It
should be remarked that in many cases of interest exact solutions are not available and

recourse must be made to approximate methods of solution. These approximate methods, ‘

usually comprised under the general heading of "perturbation theory" justify a closer

study because of the insight which they afford into the workings of physical disturbances
in an eigenstate. In a discussion of this matter a deeper knowledge of the basic properties
amd of solutions to and eigenvalues of Schr8dinger's eguation will be needed, and these
are studied next. In particular, we Justify the assumption of "completeness" of the

eigeniunctions.




Page 15

General Properties of Solutions to Shr8dinger's Equation

Schr8dinger's equation belongs to the class of Sturm-Liouville equations, usually
written in the form: IL(u) + AMBu = 0, where L is a differential operator defined
by: L(u) = (pu')' - qu , primes denoting differentiation in x where u = u(x). The
functions p, q, and P are also functions of x. It will be supposed that B(x), which
has the nature of a weighting function, satisfies the condition B0 in the entire
fundamental domain of x, which domain will be taken to be finite. A is a constant,
the eigenvalue of the Sturm-Liouville equation. We shall first demonstrate that the
common forms of Schr8dinger's equation, or the component equations into which it can
be separated, are of this form.

Using the abbreviation k2 = BRZM/hZ, we can write every one-dimensional Schr8dinger
equation in the form ¥ - kQV(X)W + K2V = 0.

Comparison with the Sturm-Liouville fom gives:

g (% q:kZV(X), B:‘-l, &ﬁd?\:kQE

As another example, the radial equction for the H atom is 3

(r R*)* = (1L(1+1) + kerV(r))R + kzrzER

=0
Here we have p = r? q = 1(1+1) + kerV(r), B = r2, A = K°E.

These two equations illustrate that from one Schr8dinger equation to another the
fundamental ranges of the independent variables may and in general will be different.
Nor will the boundary conditions in general agree. In any one case, however, we may
express the relevant boundary conditions in the following form : if u and v are any
two admissible ¥ functions, then vpu'g = Vpu'ga if a and b are the end-points of the
range in any one problem. The theory can be developed on the basis of this property.
For the sake of simplicity, all functions u and v will be assumed real.

The operator L in the Sturm-Liouville equation is Hermitian with respect to functions
satisfying the boundary conditions given above. If we work out the integral JvL(u)dx
over the range from a to b we obtain

Sv(pu‘)'dx - \vqudx = vpu'gi - Sv'pu'dx - quudx

The integrated part vanishes because of the boundury conditions. Performing anotier

partial integration, we find that j;L(u)dx = - v'puéz + ‘Su(pv')'dx - Suqux

1

guL(v)dx
Since L is a real operator, L = L* and the above result proves its Hermitian nature.

The above is a special case of a theorem known as Green's theorem.
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The Statmonary Churacter of the Eigenvalues

As will now be shown, the Sturm-Liouville equation itself represents the condition

that the integral A(w) =5(pu'2 f»guz)dx shall be a ma<imum or minimum, provided

that ‘Yﬁu2dx = 1. This last is the normalising condition usually applied, as will be
apparent from consideration of the functions B given on the previous page. To demonstrate
this, the following result from the calculus of variations is reguired : if u is an
unknown function of x, theform of which is to be determined, and I(u, u', x) is a given
function, then the u-functions which make tj‘Idx stationary, i.e. & |Idx zero, must

satisfy Euler's equation, viz.:

oI 4 oI _ 0 -
ou ~ dx ou' -

constant to be obeyed, the I in the

But if there is an accessory condition\[G(u)dx
above has to be replaced by I - AG, where A is an undetermined constant multiplier. ‘
The condition that 8A(u) be zero subject to ‘gﬁuzdx = 0 is given by putting

I = }_)u";2 + qu2 - Kﬁuz, and substitution of this in the Euler equation gives the Sturm-
Liouville equation. The process of solving the Sturm-Liouville eguation is thus
tantamount to finding the stationary values of A(u). (This is unrigorous, since no

proof of the sufficiency of the Euler ejuation as a condition for stationarity can be
given, but it holds for zll physical problems). A(u) has in general many stationary
values. -

The eigenfunctions of the Sturm-Liouville eguation will now be ordered in thefollowing
way : suppose that u = ul(x) satisfies the ejuation andthe norm=1ising condition, and
that it mekes A(u) a minimum (as it usually will for Schrédinger's e uation). We shall
denote the corresponding eigenvalue by Kl. We shall now seek a minimum of A(u) subject

not only to j‘ﬁuzdx = 1, but also to Buuldx = 0. Let uz(x) be the function which

produces this minimum. It is at once clear that this minimum cannot lie lower than
the first, because the requirement on the admissible u-functions has been made more
b

stringent. u, must satisfy two accessory conditions, u, only one.

1
is also subject to the Sturi=Liouville equation. We now have I as

2

It is found that u2

I= pué2 + qug - Kzﬁug - pﬁuluz, KZ and U being two undetermined

constants introduced in virtue of thie two accessory conditions. Putting this in the

Buler equation, we now obtain: 2qu2 - 27\26u2 - pﬁul - 2(pué)' = 0.

This is equivalent to: L(u2) + KZBuz + %uﬁul = i@

To determine P we multiply bu Uy and integrate over x. In doing this we observe that
ulL(uz)dx =fu2L(ul)dx = -7\1 fBuluzdx = 0.

The first step is Jjustified by L being Hermitian, the second because u, satisfies the

6
Sturm-Liouville ejuation, the third because of the normalisation condition.
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The term in L thus vanishes and we are keft with h2j16ulu2dx = ~%URJBu§dx
Here the left-hand side vaunishes on account of the second normalisation condition,
and, as we have Buidx = 1, we must conclude that p = 0. The equation for u, thus
reduces to the Sturm-Liouville equation. In other words, the function Uss which
produces another minimum in A(u), is simply another solution of this equation. KZ’
the multiplier appearing in the minimising problem, is the second eigenvalue of this
eguation.
This process can be continued. We next seek a function u5 which will minimise A(w), -
but subject to the three conditions

j Bugdx =1, Sﬁu1u5 = 0, j\Buzu5 = 0.
The minimum thus obtained will lie at ksst as high as that due to Uy for the choice
of admissible functions has been further restricted. If we write down Euler's equation,
there will now appear three undetermined constants, k3 and two others which may be
shown to be zero by multiplication by uy and integrating, and multiplication by u, and

2

integrating. The resulting equation is again a Sturm-Liouville equation, with A\, as

3

its eigenvalue. In this way we obtuin an ordered sequence of eigenfunctions Uy 5 % o
etc.
=923

and corresponding eigenvalues )\l,Z,B,etc. the arrangement being such that the
minimum of A(u) corresponding to uy is the lowest, that due to u, the second lowest,
and so on, except for thie possibility of coincidence of these minima,

The last and most important step is to show that the minima of A(u) are identical

with the successive A's., This is done by substitution:

s 2 H -
A(un) = jkpuﬁ + quﬁ)dx - unguégz - jzun(puﬁ)' - unqun)ax
= - SL(u Jix = A Sﬁud.x
n n n
= A
n

We have thus proved that the eigenvalues of the Sturm-Liouville equation are the
successive minima of A(u) as u is subjected to increasingly restrictive conditions.
These results have an immediate pliysical consequence. They permit the determination,
in some cases, of an approximate value for the lowest energy state without solving
the Schr8dinger equation at all, and, to a poorer approximation, the determination
of the eigenfunction corresponding to this state. We know that the lowest eigenvalue
is the lowest possible value of A, with u subject only to the condition of
normalisation. In some cases a good guess can be made at the general form of the

eigenfunction u,, which is left undetemined by using several variable parameters. One

1,
can then easily calculate hi = = ulL(ul)dx, wiere Uy is the trizl function which
depends on tioe parameters. Ki will then also depend on the parameters. If now we

minimise hi with respect to these parameters, its lowest possible value will be Rl,
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and ﬁ; corresponding to these parameters will be m,. The accuracy of this method

1°
depends, of course, on the adejuacy of the initial selection of EE. In general, the
Kl determined in t7is way will be too high.
On comparing with the one-dimensional form of Schr8dinger's ejuation, it is seen that,
apart from multiplicative constunts, the operator L is the same as =H. Hence,

kl = constant. (u H(u Jax
and the method just outlined amounts to minimisation of the enerﬁ .
Further, if p and g are boti greater than zero, A(un) = X (pué + qun)dx:>0, and
therefore every kn is greater than zero. There can vherefore be no energy states
below the minimum of potential energy (t.is is of course trivial from a classical
point of view)., That this is so may be illustrated by the one-dimensional case, for

which the Schr8dinger equation is V™ - 2(V(x) - V W+ k2(E -V )IV = 0, where ‘

V_ is the minimum of potential energy. Here p and q are greater th;n zero, and so
o

2 . , ) sk
Xn =k (En - Vo) is greater than zero. Thus En is greater than VO.

Distribution of High Energies

Although the seguence of eigenvalues of the Sturm-Liouvilie ejuation follows no
uniform law, depending as it does on the form of p, g, and B, it is nevertheless true
that the high eigenvalues of all Sturm-Liouville eguations are distributed according
2 2
to the same law, vizs lim }\ = constant.n
n-yco
To prove this, we transform the equation by the substitutions
. nk 1m
n=P P2, t= qu fdx
a' -
and use t as independent variable. If we find the values of 1, m, k, n which cause

(1) the coefficient of Tz to vanish, and (2) the coefficient of 222 to be the '

same as that of Az, we find that k = n = = %, l =<} m=%.The Sturm-Liouville
equation then reduces to g?z - r(t)z + Az = 0, where r(t) is a function of % which is
in general bounded, but its maximum depends on p, 4, and f. Let the upper bound of its
absolute value be M, so that it is a good approximetion to say that if h is much greater
than M, the elgenvalues are tnObe of the equation Tzz + Az = 0. This has the general
solution z Acos(h t) + 351n(h 2%). Now, whatever the boundary condition on u required
by the physical problem may be, z must vanish at the ends of the t range. This is

easily verified by examining the boundary conlltlons and observing that z = (pﬁ)l/A
The end-points of the t range are 0 and +° iﬂﬁ/p) dx. This allows for z only the

solution B51n(K ®%), with N\ given by n nz/toz. Therefore

lin A = _-%-25%——

>0 -+
g(ﬁ/p) dx
(¢ 8



-
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This result is immediately reminiscent of the free electron case, where the
energy levels are distributed accord ing to the law const.n?. The spectrum is discrete
if (a,b) is a finite range. However, if t© tends to infinity in the same manner as
n it becomes continuous, for then An+1 - %n is found to be zero. We encounter here all
the characteristics of the free electron problem, and may therefore
summarise by saying that the high energies of any physical syst em are distributed like
those of a free electron.

The simple harmonic oscillator apparently violates this rule, the analytical
rea® on for this behaviour being that r(t) is not bounded. This, in turn, results from
the form of V which goes to infinity like x2. Clearly such a case is over-idealised,
and if V is given a finite upper limit our result holds for the oscillator as Zwell.

In the next section the completeness of the solutions of Schr8dinger's equation

is investigated, and the above result is required in the form that K goes to infinity
with n.

Completeness of Solutions of SchrBdinger's Equdion

Completeness of a set of eigenfunctions u, means the following: if f(x) satisfies
the same boundary conditions as the U s and we d&fine -
= \fﬁfu ax and § =f - :§:c.u.
n n ii
then completeness means that — Limit 6§ = @, where we-define @i = jgiﬁdx
o n-w

~

In words, this means that any function f subject to the same boundary conditions
as the u, can be "approximated in the mean" by a series in C Uy This does not mean that

f:Zc.u
pt I 8

in the general case, beesuse the left and right of this equation may not be equal at
certain points although_the completeness condition is satisfied. Nevertheless, the
uniform convergence of clul, and nence its equality with £, are always assumed in
physical problems.

We now widh to establish this completeness property for the uy of the Sturm-
liouville equation. We define

[?2] = a
n n

2
The quantity 6n/an is evidently normalised, in the sense that S(én/an) Bdx = 1.

of

We also observe that én/an is orthogonal to every u, up to an including u , the order

of the uy being as described above. To show this we calculate:

1
S((Sn/an)ulﬁdx gn'{j‘fuiﬁdx - Zc fu U, de}

o . o sd
=7 - (ci -c;) =0 ifign
n
1 . =t f
and = EQ. (ci -0) = ci/a.n if iDn

These results follow from the fact that u is orthogonal to all preceding U,

and from the definition of c, .
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We can say, thersfore, that the function &n/an satisfies all the accessory
conditions of LSS except that of minimising A. Considering now the class of functions which
satisfy these conditions, u

produces the smallest A(u), namely A_ .. Therefore

n+1 n+1
6n -
A al? A(u‘n+1)
i 5 e 2 > ; . .
or aJr21 Pl n) + q((Sn) x 2 ?\n+l’ putting in the form of A(u) and the value of A(un+l)
Defining the abbreviations g = puif' + quif
. . o G 2
h:LJ pu! uJ + quluJ, and inserting the definition of 6n’
n n n y
%2 (pf'2 + qf2)dx - 220. rg.dx + Z E gh. .dx >/7\ (B)
S i=ll“ sl il 3= iJ n+1

{11 .‘0

But 1
u \fgidx = pu'f f[u (pu'}' =Y quld.x J;‘?\ u. Bu dx = c )\ performiné a partial

integration, applying the boundary conditions and the S=-L equatlon, and the definition of c,
in that order.

(6 here = the

Similarly, h,.dx = u. pu'- .(EJ. (pu')' - uquy dx = (u.A\.Pu.dx = A, 0,
1J s i
Kronecker 8)

T it ij

Substituting these values in (E) above, we find immediately that
ji}_ g(gf'z + qu)dx -Zcizki 2\
n

n+1l

Since f satisfies the same continuity and boundary conditions as the U which are .

essentially the state functions for the physical problem, the integral in this

eguation exists. (If f violates this rule, an "approximation in the mean" by the u, may
be impossible). Let its value be A. Also, because the lowest eigenvalue is the minimum of
A, the very existence of such an eigenvalue ensures that it will lie above some finite
lower bound. If we reckon all A's from this lower bound, i.e. measure all energies taking
the lowest state as the zero levely which is clearly permissible, they are all positive.

Hence the summation in the above equation is certainly not negative and A) )\n-i-l .ai. But

we know that ?\n+l tends to infinity with-n+l, and therefore, since za.rzl was defined by
a2 - 62
n n-

we have the result that Limit 631 = 0 as n tends to infinity.
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Matrix lMechanics

Let P be an operator generating a complete system of orthogonal functions
by means of the equation D s g

P, = p, 0.

The number of different @-functions will in genecral be infinite. If Q is some other
operator, defined with respect to the same variables as P, we can form a doubly
infinite array of numbers

[
qu =‘3 ¢=iFQ¢j s K

This fact in itself is trivial, but it is noteworthy that the rules for combining
several operators on this definition are precisely those for combining matrices. In
other words, if M and N are two operators, then

M.. + N.. = (M + N)..
iJ 1J iJ

and (MN)i Eamlx Kg
This first is obvious, as M.j + N.. =\Y¢#M¢..dT +‘§¢?N¢..dm =\§B¥(m + N)ﬁ..dT = (M+N)ij

Further, (MN) \gﬁ*(hN¢ ).dT. If we expand N¢ as Zza}‘ﬂx, we must have

$¢*N¢ A7 = 237\ g(é )40 = a0, = P
By deiinitlon,j;¢¥N¢..dT = Nij’ so that Nij = a.ij

Thus N¢ may be written H¢ ZSN ¢K If this is substituted into (MN) 52 we have:

(IﬁN)i j{é*(him ¢)\) «dT = f N gﬁ*hﬂ)\.dT gm

To form a matrix by this rule, two things are required; first, an operator such as
Q; second, a complete orthogonal system of functions @. This system need not be the
system of eigenfunctions of Q3 it may belong to some other operator P. If, however,
the system of functions is that belonging to the operator itself, the matrix is
diagonal. In forming the matrix elemeats of P we observe that:

'l
P.. = \@*P@..dT =\ @g* AT = p.&,
i3 Y% ¢J f251p3(25:J P50 5

The diagonal elements of the matrix P.j are simply the eigenvalues of the operator P.
This theorem provides the link between Schr8dinger's theory and the matrix theory of
Heisenberg.

It has been observed that guantumu mechanics deals exclusively with Hermitean operators.

The properties of the matrix corresponding to a Hermitean operator are therefore of
interest. If H is Hermitean, then
Mos = (6% d- dT
iy " ) JL x\_’&'j v A

H . jr(H*QS?_)ﬁj J4T =J(.¢jH*¢;.dT = Hgi

A matrix whose elements satisfy this relation is also called Hermitean. A real
Hermitean matrix is clearly syumetrical.
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The Formal Structure of Matrix lechanics

Atomic spectroscopy provides us witn two sets of numbers: possible
energies Ei and transition probabilities T, ., these being the probabilities of transitions
between the i'th and j'th energy states, mSisuring the intvensity of the line of frequency
(E.-E.)/h. The latter form a square array reminiseent of a matrix, the former a single
seduefice. If we feel tempted to represent the energies as a matrix also, we should
plausibly look for a diagonal matrix with the energies strung along the principal diagonal.
The problem of Heisenuerg, Born, and Jordan was to devise & method of calculating these
two matrices. The following scheme was developed with utter abandon of classical postulates
and its success was striking.

Far the present we shall merely state the directions for solving the prohlem
without giving any reasons for them. Afterwards, we shall show that this heuristic method
is related to, and indeed followsIrom, the operator theory given above.

Let it be desired to [ind the observable properties of a physical system
which has a classical Hamiltonian

g t .
H(‘%I,Z,..,k’Pl,Z,..,k)’ where p's and q's are as usual. .

e then seek a system of 2k matrices Q P which satisfy the following

l,2’..,k’ l,2,'.,k

conditions
: . _ _ __ n PR .
(1) Qan - Qan = PmPn - Pan = 0, Pan - Qan = Eﬁi'énm'l (I = unit matrix)
(2) and H(Ql,Z,..k’Pl,2,..,k) is diagonal

If such a system can be found, the diagonal elements of H are the energies of the problem,
and the squares of the elements of the Q matrices are the transition probabilities.

It should be noticed that the subscripts to the Q's distinguish not elements but entire
matrices whose elements would be written (Qk)ij’ etc. The first part of (1) states:

simply that all the P and Q matrices commute among one another, while the second part
indicates that a given co-ordinated matrix does not commute with the matrix assigned to its
conjugate momentum. The above stab ement might well be expressed in terms of the Poisson
bracket (PQ), and the formal similarity between the axioms of the present theory and the
transformation theory of mechanics is in fact very thorough-going. H in (2) is a function
-of matrices and is therefore a matrix Itself. It is constructed by expanding the .
classical H as a function of p's and g's and then repiacing each ol these by its

associated matrix. We state witiout proof that conditions (1) and (2) define a set of
matrices unique wita respect 1o the diagonal elements of H and the squares of the elements
of Q. (The elements of Q are in fact indeterminate to within a constant multiplier of
absolute value one).

12

If we regard ql as x, as y, q5 as z, theni(Ql)iji is the probability of a transition

e
from the i'th to the j'th energy level resulting in the emission or absorption of light
having its electric vector along x, etc., so that the theory is competent to inform us not

only about the total probability of transition, which would clearly be
2 > 2 2

but even about the state of polarisation of the light emitted or absorbed.

Before considering the details, we reguire two theorems on matrix transformations.
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1). If H' is Heruitean, there exists a matrix 3 which makes H = S‘lH'S diagonal.
Trhis will be stated without proof.

2). The above transformation applied to a matrix product has the same effect as its
application to every matrix in the product individually, i.e., if A,C,B, are
matrices, -1 -

S T(ABC)S = 5 "AS.S "BS.S "CS. This is an identity.

e now show how the directions for finding the matrices in question can be carried out.

It is usually fairly simple to find a set will whll satisfy conditions (1). These may

be called Qi, Pi. These will not however in general make H(Qi,P;) diagonal. By means
ofthe above transformation with some as yet undetermined S, however, H(Qi,Pi) can be made
diagonal. Hence, if we write H' for H(Qi,Ei) and H for the diagonal matrix we are
seeking, S-lH'S = H. If it is known, then the energies are given by the diagonal elements
of H. Not only that, we can then calculate likewise the elements of the correct Q and
P matrices. Equation (2) above shows that
-1

Qi = 3 QiS
The solution of the problem thus reduces to a determination of the correct
transformation matrix S.

To complete the discussion, we.indicate briefly how this is done. The transformation,
on multiplication on the left by S, takes the form:

H'S = SH

The elements of H' in this egquation are known. In terms of them, the matrix equation
above may be written a s a se, uence of ordinary ejuations:
7 ' S,. = <.S..H:: =8S..H.. because H is diagonal
A TAAAS P % T i % e 5 GLag
For any one value of J, we find therefore that
— (H!y = H5,4)8, =0, i=1,2,5,400sy (we have omitted here the
il i TA o
A suffix j.)
Here H is simply a number. This is a set of linear equations to be solved for the
unknown quantities S, . If it is to have solutions, the determinant of the coefficients
of the S, must vanisb. Let us suppose 1 ich may be

the maximum value of i to be n (w
infinite% so that we have here n ejuations. The vanishing of the determinank is
ejuivalent to an algeoraic ejuation of the nth degree in H, and has therefore n solutious
for H, of which soume may coincide (degenerate case). By introducing any onc of the

values of H thus determined into the aboeve, n values of the 3, can be calculated. We
t.hs obtain & total of n2 S-values in all, and these form, as they should, the square
array composing the transriormation matrix.

Equivalence of Matrix and Wave liechanics

Let us consider the matrices which are to satisfy (1) and (2) as being formed from the
set of operators according to the rule

Q= | gagyan
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The matrices Q' and P' will obey (1) if the operators from which they are formed obey
these relations. Interpreting (1) as operator equations we see that they are satisfied by
the operators: L i

m m m~ 27mi‘dq
This is precisely the assignment which has already been made. The elements of the
matrices Q) and P} are then Tormed by choosing any complete orthogonal system of functions,
ﬁi, and using the definition of ng' These matrices will not make H diagonal. The
condition under wnich

BQ b 8

2ni ‘Gq; 125000,k

is diagonal is simply that the functioms @ satisfy the operator eyuation

' = @g*H(q. .
B2, .0 = % (4 5 ... %

3 ooy

)ﬁj.dT

H\!J.l = Ei\lfi (@ =

This is none other than Schrédinger's. Thus the problem of making H a diagonal matrix is
mathematically idenctical with the problem of solving Schr8dinger's equation. The @'s
satisfying Schr8dinger's equation maksxkms Turnish the diagonal elements

f\l@hﬂb ..dT = E,
3 l J

b 1

The correct choice of matrices in Heisenberg's matrix mechanics is the exact equivalent of
the proper selection of eigenfunctions in SchrBdinger's theory. When, in the former theory,
we determine the elements of S we are doing the same as when, in the operator theory, we
pass from one system of state functions @ which are not solutions of bcurddlnger'

equation to the 1"'s which are. This becomes entirely apparent if we try to find th
counterpart of thé elements of S inithe vperdtor theory.

For this purpose we suppose that we have satisfied (1) by matrices with elements
purp :

Jorap ar, Jor 22y am,

e
&

which do not make H diagonal because the @'s are not solutions of HV=EV. These elements
compose the matrix H', and H'S = SH now reads

4{‘ ¥
= ¢’§-H¢?\.dT.S?\J. = SiJ.Ej '

It is solved if we put §3¢KSKJ j° for on substituting this into the above there results

0, = S, .
S:ﬁ J 1J
whence Sij =!S¢§Wj.dT, and this seme result is obvained if we multiply ﬁxij - Wj by

both sides with ﬁ? and integrate. By closer examination we can show that we have constructed
the only solution.

Sij thus emerges as the i'th coefficient in the development of the j'th energy eigenfunction
in terms of the -&tate-functions @.

The results of matrix mechanics eeontribute nothing in the way of basic information, but

the matrix point of view does simplify many problems. The two views are essentially eguival=
ent. Instead of saying: a system is in an eigenstate with respect to the energy, we say

that the energy is diagonal. 5
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In many physical problems an excat solution of the operator eguation is
difficul. to ovtaine. It may then become necessary to use approximate methods in order
to find the answer. Tlie details of one such method wiaich has proved highly fruitful
will now be discussed in connexioxz withh Schr8dinger's equation. Its application to any
operator equation is immediate, but limitation Ho the energy eguation is appropriate,
partly for the sake of definiteness, partly beacuse the method is rarely applied in
practice to any other case.

Perturbation Theory

Let us suppose initially that the eigenfunction of the energy operator is
non-degenerate for the state in question. To provide a specific physical basis for
our discussion we think of a physical system, like an atom, subject -to a "perturbation",
that is, vo forces which shift the energy levels slightly without changing appreciably
their general arrangement. Mathematically, the effect of this perturbation is to
introduce added terms into the Hamiltonian H of the system. These added terms may be
constants, or functions of the g's, or functions of the P's and q's. In the last case xi
they appecar as diflerential operators in the Schr8dinger equation, otherwise as
ordinary functions. Wihatever they are, we shall denote them by the symbol V, without
implying, of course, that V is anything in the nature of a scalar potential. If we then
suppose that the unperturbed ejuation

0 b
(B - ﬁ.k)llfk =
is solved, our problem is to find solutions of the perturbed eguation
(H+V =+ Ek)¢K =

In particular we wish to know the ¢1, i.e. the eigenfunctions of the perturbed problem,
and the bk's, which we suppose to be slightly, but not greatly, different from the Ek
of the unperturbed. V is considered to be a "small" operator, and by this we mean that
the matrix elements of V, formed with the use of the complete system WK are small
compared with the diagonal elements of H in this system, i.e. with the EE. We then

approximate the @#'s by the series

¢ égb + éz V. + ..
K KK K kh K N kk A
and the energies by Ek = Eéo) + E;l) + EéZ) R

and determine the various a's, b's, and c's. To effect the calculation, we assume
ok © 1) L2
k

a b c Ek Ek

unless b and Eil) vanish, in which case we simply suppose a c, etc. We shall not be

interested in the higher approximations. If the results on application of the method

by arrangement

are inconsistent with these conditions, our scheme fails and the results are not

(0)

quantities of the zeroth order, the b's and E(l)'s as of the first order, etc. The

significant. To avoid circumlocution, we shall speak of the a's and B 's as

matrix elements of V are assumed to be of the first order.
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Uponn substitution into the perturbed equation we get

O
,(0) ! (1)
+ %,(H - B )bk?\%\ + %J(V - hk )ak?\‘if}\

Do e 4 L Dy wD) (2)
- _?a(ﬂ - By )ckxux + <RJ(V - B )bkhwh + - B Z%:akkwk + «es =0

The terms are arranged in rows according to their order of smallness. Let us multiply
this equation by @? an integrate over all co-ordinates of the problem. Then if

V. = V‘l’%‘fv\iﬁ UN
J X

5L
(0) (0)s- .
(8577 - B " )ay,
=(0) _ -(0) , e
+ (mj Ek )bkj R %amvj}\ - B akj 7 .

(0) (0) ; A 1] (2)
+ (uj - Ek )ij + ;éibkkvjk - Ek bkj - Ek akj + eee =0

In the zeroth a proximation we can neglect all but the first row of this equation, which is
to be satisfiied for any value of j. Putting the first row equal to O for j # k, we find
that akj = O because the energy dirfference is then rfinite. If j = k, the equation is
identigcally satisfied and does not yield a value for e fle can determine it, however, if
we recall toat ¢k is to be normalised. To this approximation, the series for ¢k tells us

. : . 1 . L. . wqe
that ﬁk = akkwk; hence, because Wk is already normalised, 2 = 1 and our first result if

therefore that akj = 6kj' In accordance with the usual process ol making successive
approximations we substitute this answer back and solve again, this time retaining the next

order of terms. The first row now vanishes, of course, and if j # k, we get, using a . = &

k3 kj’
L @
b s = y y J £ k
.4
T o) o)
k J
If j =k, E](&l) =V

This constitutes a first-order approximation. To get the second, we substitute back and
solve again, retaining all the terms written down this time. Now the first two rows vanish
and to make the third row zero we proceed as before. Ih j=k, we get

(2) _ (1)
L %bkkak ~ R
(2) _ WP

Thism by virtue of the above, reduces to Ek
0) _ 5(0)

A k A
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The prime attached to the sumuation sign is to indicate that the term for which the
two indices are equal is to be omitted. On putting j # k we get an approsimation for
cjk in which, however, we are not interested as we are limiting ourselves to two

approximations. Higher approximations may be obtained by continuing this process. We
are particularly interested ia the energy changes given above. To the first approx.,
the increments of the energies due to the pemmrbation are simply the diagonal elements
of the "perturbation matrix". To the second, they involve all unperturbed frequencies
0 (0 3. et I z . By
E; ) - b{ ) = Kwk , where Wy 1S the emission frequency of the transition from E;Q)
) T : . .
to bi ). It is inteeesting to compare these results with those used by astronomers to

calculate, for instance, the effect of the moon's perturbation on the earth's orbit.
The formulae are essentially ;identical.

The results will be illustrated by applying them to the Stark effect. The simple
Schr8dinger equation is then that of an atom (with one electron, for simplicity). V
is the additional potential energy of this electron in a constant electric field F.
If this lies along the x=-axis,

V = - efx

From the abovey the first approximation in the energy is
(1) _ *
E ' = - eF | Vrx¥ .ar

This energy change represents what is known as the firost-order Stark effect. Let us
suppose that k denotes the lowest energy state and that the atom is hydrogen. (This
state is non-degenerate). This state is then a function of r alone, and if a product of
a function of r alone is integratedrwith x over all space, tune result is zero. The
ground state is thus unaflected by the field to this order of approximation; it
exhibits no "first-order" Stark effect. The same is true for the normal states of all
other atoms and in all other states which have a spherically-symietric energy state-

function. ol

It is not true, however, that EW;xWA.dT vanishes if k # \. Hence the "second-order"

Stark effect is given by (2) 2F2“éf X F
Be " =8 L T0)_ L)
k

A

A

which can be calculated for any atom if the energy eigenfunctions and the energy

levels are known. In classical physics, the increment in energy of an atom due to a

stetic electric field in the absence of a dipole mowent is usuvally written in the

form E(2) __P. o
k = F

The juantity Py is called the polarisability of the k'th state. Comparing this expression

with that given above, we find that the polarisability is given by

L 5.02S Ik
P = ©0¢ £, 0)_ 5 0)
erk o ok

This has been tested experimentally for many instances and found to be correct.

We now consider the theory in the case where the eigenfunctions are degenerate.




rage <o

The above theory is inapplicabl? ?hen some of the energies Eio), over which the
s i.e. if the state wk for which the perturbation
is to be computed is degenerate, bince in this case some of the denominators vanish and

(2)

sum is to be extended, coincide with E

we can no longer be sure that E(O)E?E is satisfied. It is somewhat fortunate that

practice has shown a first approximation to be sufficient for most purposes, so that the
method need only be worked out this far.

Let us suppose that the state, the perturbations of which we wish to investigate,
possess an s-fold degeneracy, so that there are s eigenfunctions for the eigenvalue Eﬁ.
We label these ¢ sz, ces wks' The are considered to be orthogonalised by the

Schmidt process, so that not only

¥y .dT = 0, but alsod‘l/m\\lf AT =0 if N £

J kA1 kp
The index 1 here stands for any other state belonging to some other energy Ego). The
solutions of the "unperturbed" equations (H = EE)¢kK w0, Aw 12, a8
(H - Ei)Wl =0 are known. The states Wl

may or may not be degenerate.
Solutions of the equation (H - Ekh + V)QSkh = 0 are required. It is now necessary to add
another subscript h to Ek for the energies will in general not be degenerate after the

perturbatlon. Let us suppose that:

(1
ﬂkh = {é%uhx Kt 5;; ffﬁnx ot E;b e and B, = E + B ) cee

A=1 14k

The ol's and a's are considered to be of the zeroth order, the B's and b's of the first.
It is merely for convenience and clarity that the sums over the degenerate k'th state have
been separated ifrom the others. Substitution of these sums in the equation now yields:

(€ - E) {Z i, * ékalwl?g
+(H-E§) {Zﬁmm\ %buf% @

L ﬂ(l))%é‘n * 2 al‘ylt-+ 2 B

Terms in the first row are of zeroth order, those in the second and third of the first.
If we multiply on the left by VY , wnere m £ k, and integrate, neglecting the second and
third lines gives every a; = 0. Thus we may, to the approximation here sought, neglect

all the a's.
If we now multiply by Wk , any one of the s degenerate functions, and integrate. The terms

in (H - ) vanish, and there remains:
/,dm(v -E(l)()w\) (v S\Ikp k}\.dT)

This eyuation must hold for every value of p from 1 to s. It is therefore a system of s
linear eguations from which the coefficients CK are to be determined. We can simplify
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the writing if we omit the .ixed indices k (designating the group of originally
degenerate levels) and h (numbering the members of this group). These eguations are then:

gy
(Vll )%l + VlZ&Q ¥ VlBXB + eoe + Vléx =0
(1) : : -
., (1)
Vsldl e VSZ:XZ + V 5 \5 + esee + (VSS - B ))(s =

L
These can be solved for the & s only if the determinant A(V,E(l)) vanishes ?he
expansion of this determinant produces an equation of the s'th degree in E(l , ,and this
has at most s different roots. Hence there are at most s different values of E\l) for
which the set given above can be satisfied. They are the new energies which we set out
to find. If some of the roots coincide, some of these coincide: the perturbation has not
removed the degeneracy completely. A = O is often called the "secular" equation for the
determination of the perturbed energies. If V is zero, it has the s equal solutions
E(l) = 0; as the Vph increase in magnitude the energies move apart. Figuratively
speaking, the perturbation forces the s initially coincident energies apart. For each Eil)
there is one set of 2's, s in number. Altogether, this method allows the calculation of

2 iy s . ! . iy . . i = B

s~ coerficients d, wihich is of course just the right number. The remaining coefficients,
the b's and P's need not be calculated. Since the a's are zero, the full zeroth approx.
has been obtained.

A study of the Zeeman effect provides an iliustration of the method discussed. Let us
consider again an atom with one electron in a central field. The eigenfunctions are

V.. = ¢, R(r).c P (cos0).c eimﬁ
They possess a (2; + 1)-fold degeneracy corresponding to the fact that the energy does
not depend on m, and there are (2L + 1) possible values of m for a given integer 1.
Hence A runs from 1 to s = 21 + l, and the various degenerate eigenfunctions can be
numbered in such a way that. = 1l corresponds tom = -1, A =2 tom = - 1 + 1, etc.
Now it can be shown that, if a uniform magnetic field H along the z-axis is present,
the added term in the Hamiltonian is

L 4ﬂ1Mc°E”_E', where M is the electronic mass.
In forming the matrix of V between the degenerate states every integral will contain the
BaEs: 0202 R(r)P (cos@{\ .s5in@.drde, which is unity since each
of the three factors of V is normallseu individually. The remainder of each integral

will be:

' f

hell hell '
= 1 -1 0 1m2¢ E 1(m2 - m )@
£ *3n m‘a A = T T 5 5 )e 17 ap

Here ml and m2 are the two m values for the states between which the matrix element is
-l- . - .
taken, and 1/(2m)° is the normalisation factor Gy This integral is zero unless m, = m,.

le see that all the non-diagonal elements of V vanish and that the diagonal ones are:




Vi, = - AL, Voo = - A(L - 1), vj3 == AL - 2), o0 V., = AL, where A is heH/4mlic. The
solutions of the secular equation are clearly

E(l) = mA = m. heH/AﬂMc , where m can take any integral value

from -1 to +l. Thus every degenerate state with azimuthal quantum nuuber 1 will, under the
influence of the fiela, split up into 21 + % sublevels, all equally spaced and grouped
symmetrically about the unperturbed level E\L1) & 0, the energy difference being heH/4mlic.
ihat effect will this have on the appearance of spectral lines emitted in the presence of
a Iield ?

A spectral line which is due to the vransition of an atom from the energy statecl=2 to

1l =1, the former having 5 m-values and the latter 3, might be expected to split up into
FifkmEmxkimg® seven lines corresponding to the fifteen different possible transitions. This
ovealooks, however, the fact that the transition probabilities are given by the squares of
the matrix elements of the co-ordinates. If we calculate these we find that they vanish
between two states whose m-values differ by more than one. Transitions which violate this
rule have a zero probability, and hence do not take place. In this way, the number of
possible transitions is limited to nine, with three distinguishable energy gaps, .'
giving three lines, one of the freyuency of the original, one less, and one greater.

Hence the line should appear as a symmetrlcal triplet, and the frequency separation
between its components should be

Mw = eg/2Mc
This quantity is indeed the Larmor fregquency.

Ihis theory, giving the "norm=l" “eeman effect is in perfect agreement wwith experiment.
In general, the theory is not as simple as this however, for the electron has magnetic
properties not considered in the expression for V. It possesses indeed a magnetic
moment (spin) wonich we have not taken into account. The t.eory, then, only describes
the Zeeman efrect in its simplest aspects.




PROBLENS IN QUANTUM MECHANICS

1.

Show that if the two Hermitean operators A and B satisfy the commutation
relation AB - BA = iC, the following relation will hold:

(m)?(m)® > o)

Find the uncertainty relation for the operators Q and F(P) if Q and P satisfy
the commutation relation QP = PQ = ih/2%.

Use the Heisenberg relations to find the ground state of a harmonic oscillator
approximately.

Inasmuch as the Schr8dinger equation is a first-order dirfferential eguation
with respect to time, V(%) 9s uniquely determined by the value of W(0). Write
this connexion in the form:

W(t) = b(t)U(O) where S(t) is some operator.
a) Show that the operator S(t) satisfies the eguation

ih 4

St S(t) = HS(%)

and is unitary operator.

b) Show that in the case where H does not depend on time, S(t) is of the form
S(t) = exp(-2niHt/h)

The average value of an operator L at time t follows from the expression:
L(t) = j\!!*(t)Lﬂf(t) dr
a) Show that the time aepenaence of the operator L' = S~ (t)LS(t), with S(%)
determined as before, satisfies the equation
fﬂf*(o)Lﬂl’(o) A7 = T(+)
b) Prove the following:
ifS' = I#H' - H'L' where H' = S™lHS
¢) Show that if the operators L and M
L.M - }‘JH., = iN
the corresponding time-dependent operators satisfy the equation
LlMl == I«",I'L’ = iN'

satisfy the commutation relation

Determine the time dependence of the co- -ordinate operator x for

a) a free particle
b) an escillator




