


RELATIVISTIC ELECTRODYNAMICS

Summary The matrix formulation of special relativity will be applied to the
foundations of electrodynamics; the approach follows tne principle of
the previous article on mechanics in seeking to express all physical
laws in terms of 4-vectors. The extension of the principle to 4-tensors
will be used, retaining tae matrix formulation.

Introduction

In the article "Transformation of Co-ordinates in Speclal Relativity",
t0 be referred to henceforth as (I), it was shown that the postulates of special
relativity lead to a transiormabtion between inertial observers eimlied in the 4x4
ortuogonal matrix (L) with Lll = §; L22 = B, L12 = -ivB/c, L21 = ivf/c, Ly, = L, = i
and all other terms zero. 55 14

In this representation, events in the space-time manifold are expressed
as vectors (ict,x,y,%), and all inertial frames are taken in standard configuration.

In the article "The Formulation of lMechanics in Special Relativity™, to be
referred to henceforth as (II), the principle that all physical laws should be expressed
in terus of vectors transforming like the event-vectors was used 1o derive & system of
mechanics, the validity of waich was established by appeal to experiment. Electrodynamics
will now be approacned in the same spirit; it is to be hoped of course that the
verification of the metuod achieved by reference to pradgice in the case of mechanics will
anticipate a similar result here, leading to & unification in relativistic physics.

4-vector Operators

In all of elecirodynauwics we are concerned with vector fields, i.c.
guantities of a vectorial nature which vary from point to point in space, and the
calculus of vectors is needed for the expression of physical laws. The discussion of
tine relativistic form must begin then with the transformation properties of the
calculus operators.

Consider the columm [T = o/o(ict)
o ‘ o/ox
b/by' '
o/oz , a vector operator in system S.

In another inertial system S' its components will take the form
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FProm tiis it follows that the operator ﬂ = V" - (l/c ).-—-é- = UU
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is Lorentz invariant, i.e. 3'Q = Q@)(L)Q =ﬁu
Thus the column represented by Ul transforms like a 4-vector, and may be

termed a 4-operator by analogy, and (3¢ transforms like a scalar.

4-Tensors

It will be necessary to extend the idea of a 4-vector to include entities




corresponding to ygl ( = curl I) in three-dimensional vector calculus.

In general tensor theory, a guantity Tk is tensorial if the representation
. Pl . e i ; e ) )
lij under & transrformation of co-ordinates with matrix liyy, is obtained through
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Ny =4ty =0, 08, (sc)

For a second-rank tensor, with two suffices, this transformation may be written
™ = (1)T(H)

We shall say tnat a guantity is a 4-tensor if its transformation law is
T = (L)XI)

It follows by an argument similar to that employed in (II), that 4-tensors are suitable
gquantities for the expression of physical laws in special relativity.

To construct a quantity similar to curl V, consider the set of guantities
Gij formed from a 4-vector V by the following rule:

G, . (bVi/bxj) - (GVj/Oxi)

1J
i.e. (@) = QV - (OV)
In a system S' we have that o e
(¢)r =g'v - (O'v")

(L)RAWI) - (L)vE(T)
(L)(av - (@vm)(m
(L)(@)(L)

Taus the guantities Gi. meke up a second-rank 4-tensor expressible as a ( skew-symmetric)
A x 4 matrix (G).
These quantities will be defined as the "4-curl" of the vector V.
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The tensor G has an interesting identical relation holding between its
components, which arises from its manner of formation. This is that
oG. ./ox._ + dG.k/éx. + 0G ./0x. is identically =0
13/ *x N i kl/ J J
This can readily be verified by performing the uifferentiations and summing. Every term
of the form GZVi/GijXk occurs twice, once with a + and once with a - sign, so that the
sun vanisnes identically. This property, which is purely one of the structure of the

particular type of A-tensor typefied by G, will be of importance later in the theory.

d-current Density

The expression of the notion of charge conservation in three-dimensional
electrodynamics is the "eguation of continuity"

- L ]
Z.J + ( =0
1t we dsline & veoyor 4 =i = ficd in partitioned form,
ix J
Jy .
Jz

the equation ol continuity becomes simply [15- = 0. Now the idea of conservation of
charge is evidently not one wnich can be correlated with the properties of any inertial
frame if all such frames are to be equivalent for the expression of physical laws, so
we must find in a frame S' the equation

-

Dl?l = 6

where j.' is the corresponding vector in S'. But we know that ' = (L)T] , so that
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the equation may be written as C](L), = 0. Now it is a sufficient, but not a necessary,
condition for tnis to be satisfied that

$ = (L)§ , i.e. that & is a 4-vector.

This clearly recoumends itself as a hypothesis in the spirit of the general principle of
4-vector formulation ol the theory, and we shall therefore take the vector & to transform
via ‘the Lorentz matrix. It will be called the "4-current density"™ and combines the non-
relativistic current density and charge density in one vector; this unification of the
representation of apparently distinct non-relativistic quantities is one of the prominent
Characteristics ol the theory. It stems from toe initial step of representing events by

a vector X = (ict,x,y,2) (as in (I)); an example miy be drawm from (II), where we found the
relativistvic analogue of momentum to be P = M.dX/dT, waere M is the rest-mass of a particle,
and dT the element of proper time. The "space-like"™ components of this vector give the
quantity flv, while the "time-like" component is iflic, or iE/c where E = Mc2 x f. Thus the
A-momentum combines the concepts of energy and momentum from non-relativistic physics,
although in the modified form including the factor f.

The 4-Potential

The field potentials of non-relativistic electrodynamics are related to the
current and charge aistributions in space througi the relations :
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Here the A; are the components of a three-dimensional vector potential A. We see that if we
define a four-dimensional vectorehk = (iff, A), these equations may be combined in the single
equation
2 . g ) - >
O°A =-%/c , using the 4-current density 4 from above.

Now if eA' and " are the vectors corresponding 1o ¢A and }in a frame S', we must have

ulz‘Al
0 0% § -, ol
A' = (Llek

Tais is again a sufficient but not a necessary condition for the Lorentz
invariance of the eguation concerned, but as it involves the hypothesis that <&k is a 4-vector
it will be adopted. We thereby continue to unify the representation by expressing both the
vector potential A and the scalar potential # of non-relativistic theory in one 4-vector.

-&'/c in that frame

I

“«(L)§¥/c , which is the same as Cler. =-&/c if we have

The Field Tensor and Maxwell's Equations

‘ The vector and scalar potentials generate the field guantities E and H tarough
the equations s

E=- - %.(éé/ut) H=9 : (in free space)

Inspection shows that these formulae are equivalent to the rule given earlier
for the counstruction of a skew-symmetric 4-tensor Gij from & four-vector V, where now V =¢fX .

e il
Thus if we form the temsor Fij = OA- Q) = OxeA schematically

B

0 iEy iEy iEy
-iBx 0 Hy -Hy
-iBy -Hz 0  Hx
-iE, Hy -Hy O



Thus the tendency towards unification found in the tiaeory so far is continued when we
construct the relativistic form of the field vectors, except that we now find the field
guantities intermingled in a single skew-symmetric 4-teunsor.

We have now relativistic analogues or representations of all the elements
of non-relativistic electrodynamic theory, tie charge ana current densities, the sesdar
and vector poventials, and now thne Iield vectors taemselves. In each case the familiar
non-relatvivisiic quantities have been seen to play dualistic roles with one another in some
way. The "mixing" of tiae field quantities E and H in this theory is well illustrated by the
transformation equations for field quantities between fraues of reference ; these are
derived simply from tihe law of 4-tensor transiformation.

If in a frame S we measure the field quantities E and H, we may represent
these in a tensor F. In & frame 3', the corresponding E' and H' are found in a tensor F!
vaere

o= (L)AD)

The matrix (L) for two frames in standard configuration with relative motion along the
common x-axes was found in (I), waence

o _[B  -ivf/e 0 0 0 iBy il iE, B ivf/e O O
ivg/e § 0 O\|-iBx O Hy -Hy|f-ivf/c § 0 0
0 0] 1 0 ~iEy -H, 0 Hy 8] 0 ¢
0 0 0 1J\iEz Hy -Hx O 0 0 -
Giving the equations EY = Ex H =E,
LI E(Ey - vi,/c) H& = @(Hy + vBE,/c)
By = B(E, + viy/c) 2y, = (i - vEf/c)

The mixing of electric and magnetic phenomena in these formulse provides a
setisfying view of The observed inter-relation between electric and magnetic interactions
in the world at large. In partichilar, the effect of a magnetic field on a moving electric
charge achleves some theoretical basis j for if a charge moves along the x axis initially,
and a magnetic field Hy is applied in the rest-frame of an observer, the transformation
equations tell us that in the rest-iframe of the charge there is an electric field EY, of
magnitude vfHz/c. Thus the charge will be deflected in the y-direction by this electric
field. The deflection in the y-direction as seen by tne observer at rest however, cannot
be attributed to any electric Iield - it is ascribed to the hitherto mysterious "Lorentz
force" of the form vxH/c. The theory we are developing here then clearly has the merit of
predicting tihe appearance of this force when charges move in the presence of magnetic
fields - it is the electric field in the rest-frame of the charze which causes it to be
deflected.

It was remarked earlier that four identical relations hold between the
components of & skew-symmetric rour-tensor, viz.

bGij/ka + dek/oxi + kaiszj identically = O, where i,j,k =

dith the teunsor Fij above, and iy
four identities become

V=0 eand ¥xE= - =.08/0%

= Fohy X, = % Ly = X, = 2 hese
e Sy P M) 4 ?

These are four of the non-relativistic Maxwell Egquations for the electromagnetic field,
though. As such tensor identities obviously hold in any frame of reference, being a property
only of the structure of the tensor concerned, it follows that these two of Maxwell's
Eguations are Lorentz invariant ; i.e. if they hold unprimed in S, they hold primed in 3°'.



It may be verified directly that the other pair of Maxwell Equations in
ordinary electrodynamics may be expressed in tae form

— —
UF:*;—/C
The very possibility of representing them in this form is sufficient to
ensure their Lorentz invariance in form, as tae only quantities appearing in them are

4-vectors, a 4-teusor, and the scalar invariant c. Thus we find that Maxwell's Equations
are Lorentz invariant.

Comment on the Invariance of Maxwell's Equations.

This result of invariance of the equations of electrodynamics under a
Lorentz transformation is scarcely surprising - it is a well-known property of the
equations that taey predict a definite velocity for electromagnetic radiation in
vacuo, independent of thne system of measurement. This very result is in conflict with
pre-Lorentz relativity, but is ol course the mainspring of the present formalism. The
invariance we have discovered merely shows us that the formalism is consistent within
itself. As a result, electrodynamics in its classical form comes through the new
discipline umscatied, unlike classical mechanics, waere we found that the laws of motion
took on a new detailed form. The value of relativistic electrodynamics lies therefore not
in its better correspondence with experimental fact by production of more exact equations
but in the unification of concepts thal are somewaat diverse in the classical theory. The
transition to 4-dimensional formelism brings with it a more compact and illuminating
descriptive system, which is of value in itself.

Field Invariants

The properties of the field tensor Fjj will next be used to examine some of
the transformation properties of the fields E and H.
Two invarisnt quantities can be formed by contraction of the tensor Fij
namely
0 and £ . F F
g i P O 13kl7i3kl
(The invariant Fii is clearly = .0)
Taking these guantities in their tiaree-dimensional form, we find that
2 2 B B . g S e S
E- -H = scalar invariant and BE.H = scalar invariant.

From these results tune following properties of the field transformations
may be deduced immediately 3

S

i) if in any frame S, the ficlds E and H are perpendicular, then E.H = O.
The invariance of this quantity toerefore iﬁglleu that E' and H' will be perpexalcular in
all other inertial frames S'.

ii) if in any S BE.H = 0, it must be possible to find some inertial frame in
which E or H = Q, i.e. if in ‘some S E and H are perpendicular, it is possible to find an
inertial frame in wiich one or the other vector vunishes. Conversely, if in some S one or
the otlier vector vanishes, E' and H' will be perpendicular in all other frames S5'.

iii) relative relations between E and H are preserved in all frames. For
ins.ance, if in some S E is greater than H, it must be so in all inertial frames, from th
first invariant. Similarly, vice versa, and similarly egquality between the magnitudes of
the vectors is common to all frames.

The Lorentz F

We have already seen thet in the limit of small relative velocities, the
transformation laws for the electric and megnetic fields give rise 1o a term equivalent
to the "Lorentz force" of classical electromagnetism. We shall now consider this in the
language of the 4-dimensional representation.

The Lorentz IZorce is a  uantity describing the interaction between currents




and fields. We should obviously wish to describe it in terms of a 4-force vector ¥

. e

can see that this is possible from the field transformation equations snd the definition

of & 4-Iforce
f as

precise, let us consider the most
of fields and currents.
4-vector & .

clearly to put

That ¥ defined in this way is a
in tais article. Now the matrix F

F = 0
-iB

waere H*¥* denotes the 3 x 5 skew-symmetric matrix associated with
+the i HE . = . 11
tae rule H¥jy =& 5 H . Then Hx ¥ in

o

Thus the vector "F is given by

Now

Clearly it
The simplest way of forming a 4-vector ¥ from the quantities F and T is

F=rs

4-vector is easily shown by the methods employed earlier

the Lorentz force per unit volume in

arrived at in (II). There we saw that a 4-force ﬁf is releted to the 3-force
ff, which is exactly the form implied by the transformation equations for the

fieids, in terms of the transformation of & magnetic
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will be a vector derived from the matrix F and the

is, in partitioned form,
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=f0 iE ic
-iE H*¥ o §
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ch - H*j
the limit of smell velocities is E - %-E T iy

80 we see that we can coustruct the Lorentz 4-force throug: thae rule

The "time component" of

Tae Lienard-Wiechert Potemtials

The aypearance ol tae
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then the rate of working of the electric field.

R oy

familier Lorentz force in slightly wodified form (the
change in the definition of force in mechanics,
electrodynamics) is just one example of the general

preservation of classicial taeory in the relativistic form. Once Maxwell's eguations are
seen to be invariant, no more need really be said, except to point out the beauty of the
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Thus we can derive tae potentials in the form

Ay = (Q/C)-‘éjz“%;;;75§] Ay =4, =0
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