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RELATIVISTIC ELECTRQDYNA TCS 

Summary 

Introduction 

The matrix formulation o special relativity will be applied to the 
foundations of electrodynamics; the approach follows the principle of 
the previous article on mechanics in seeking to express all physical 
laws in terms of 4-vectors. The extension of the principle to 4-tensors 
will be used, retaining the matrix formulation. 

In the article "Transformation of Co-ordinates in Special Relativity", 
to rye referred to Henceforth as (I), it was snown that tiie postulates of special 
relativity lead to a transformation between inertial observers ei Lied in the 4x4 
orthogonal matrix (L) with L11 = ~3, 

L22 
= , Lit = -ivB/c, L21 = ivy/c, L33 - L44 1' and all other terms zero. 

In this representation, events in tiie space-time manifold are expressed 
as vectors (ict,x,y,x), and all inertial frames are taken in standard configuration. 

In the article "Tile Formulation of lvLechanics in Special Relativity", to be 
referred to hencefort~i as (II), the principle that all physi cal laws should be expressed 
in terms of vectors transforiuing like the event-vectors was used to derive a system of 
mechanics, the validity of wuiciz was established by appeal to experiment. Electrodynamics 
will now be approached in the same spirit; it is to be doped of course that the 
verification of the method achieved by reference to practice in the case of mechanics will 
anticipate a similar result here, leading to a unification in relativistic physics. 

4-vector Qperators 

In all of electrodynamics we are concerned with vector fields, i.e. 
quantities of a vectorial nature which vary from point to point in space, and the 
calculus of vectors is needea for the expression of physical laws. The discussion of 
tiie relativistic form must begin tnen with the transformation properties of the 
calculus operators. 

Consider the column ❑ = d/d(ict) 

o/ox o/ay. 

a vector operator in system S. 

In another inertial system S' its components will take the form 

But 

O ict') = a(ict) 
it' + dX .dx/at + dy.dy/u t' 

at = L11at' + L21dx' + L31dy' + L41dz' 

dx = L12dt' + L22dx' + L32dy' + L42dz' 

... etc , 

Hence d(ict') = Lllv(ict) + L12 ax + L13 vy + L14 oz 
components transforming similarly. 

From t_:is it follows that 

is Lorentz invariant, 

+ o—z.Clz/t7t' 

from X = (L)x', as (L) 

f 

the operator Q2 = 

i.e. ❑'❑ = Q(L)(L)Q = 10 

i.e. = (L)Q s 

- (1/02) 
a2 

=

the other 

=00 

Taus the column represented ay Q transforms lice a 4-vector, and may 
termed a 4-operator by analogy, and ❑ 2 transforms like a scalar. 

4-Tensors 

be 

It will be necessary to e_tena the idea of a 4-vector to include entities 



corresponding to VxV ( = curl V) in three-dimensional vector calculus. 

In general tensor tneory, a quantity Tkl is tensorial if the representation 
T1j under a transformation of co-ordinates with matrix 'ab is obtained nrough 

ij 
T! . = ~k._ .lN Tkl = ik~i Tkl ffijl (so) ~ ~ 

For a second-rank tensor, with two suffices, this transformation may be written 

T' = (M)T( ) 

rue small say tna a luanti ~y is a 4-tensor if its transformation law is 

T' = (L)T( ) 

It follows by an argument similar to that employed in (II), teat 4-tensors are suitable 
quantities for tale eupression of rysical laws in special relativity. 

To construct a :1uantity similar to curl V, consider the set of quantities 
formed from a 4-vector V by the following rule; W

Gij = (dVi/ox.) - (oVj/axi) 

i.e. 

In a system 5' we nave that 

(G) = QV - ( DV) 

(G)' =17'V' - (a'v') 
= (L)QV(L) - (L)Va(L) 

= (L)(CLV - (DV))( ) 

= (L)(G)(L) 

Thus the quantities Gij make up a „econa-rank 4-tensor e presbible as a (skew-symmetric) 

4 x 4 matrix (G). 
These quantities will be defined as the "4-curl" of the vector V. 

The tensor G has an interesting identical relation holding between its 

components, wuica arises from its manner of formation. This is that 

dGij /dxk + cGjk i  + dGki/dxj is identically = 0 

T zis can readily be verified by performing the uifierentiations and summing. Every term 

of the form d2Vi/bxjQxk occurs twice, once with a + and once with a - sun, so that the 

sum vanisues identically. This property, whic!_ is purely one of the structure of the 
particul.r type of 4-tensor typefied by G, will be of importance later in the theory. 

4-current Density 

Tue e..pression of the notion of charge conservation in three-dimensional 
electrodynamics is the "equation of continuity" 

If we define a vector 

=0 

:. (ic) in partitioned form, j 

the equation of contiLnaL y oeuo.:.us sluply U. = 0. Now the idea of conservation of 

charge is evidently not one which can be correlated with the properties of any inertial 

frame if all such frames are to be equivalent for the e__pression of p.ysical laws, so 

we must find in a frame ' tale equation 

O, =0 

where ' is the corresponding vector in S' E But we know that Q' = (L) , so that 



the equation may be written as ' q- Y Q{L)~ = 4. Now it is w sufficient, but not a necessary, 
condition for this to be satisfied that 

=(L) . i.e. that 3  is a 4-vector. 

This clearly reco.0 eras itself as a hypothesis in the spirit of the general principle of 
4-vector formulation of the theory, and we shall therefore taxe tie vector to transform 
via the Lorentz matrix. It will be called the "4-current density" and combines the non-
relativistic current density and charge density in one vector; this unification of the 
representation of apparently distinct non-relativistic quantities is one of the prominent 
characteristics of the theory. It stems from the initial step of representing events by 
a vector X = (ict,x,y,z) (as in (I)); an example may be drawn from (II), where we found the 
relativistic analogue of momentum to be P = M.dX/dT, ,here M is the rest-mass of a particle, 
and dT the element of proper time. Tae "space-like" components of this vector give the 
quantity ~V v, while the "time-like" component is ivio, or iWc where E = Me2 x 3. Thus the 
4-momentum combines the concepts of energy and momentum from non-relativistic physics, 
although in the modified form including the factor . 

The 4-Potential 

The fielu potentials of non-relativistic electrodynamics are related to the 
current and caarge distributions in space cite'ouga the relations : 

_ 1 
4  

d - + v- Ai = - Ji/c
~t

_ Q

Here the Ai are the components of a three-aimensional vector potential A. Ac see that if we 
define a four-dimensional vector .= (i0, A), these equations may be combined in the single 
equation 

Q2vl =-}/c , using the 4-current density } from above. 

Now if ell' and ' are the vectors corresponding to .4, and . in a fr uae S', we rust nave 

2 = Q2, , •, =(L) . 

Q' 2 ,t' _ .}'/c 

❑2iA.' =-(L)1-/c 

= (L)~ 

in that frame 

whicn is the same as Q 2 j =4/c if we have 

This is again a sufficient but not a necessary condition for the Lorentz 
invariance of the equation concerned, but as it involves the hypothesis that 4 is a 4-vector 

it will be adopted. Ae thereby continue to unify tie representation by ear  pressing bo ~h the 
vector potential A and tine scalar potential 0 of non-relativistic theory in one 4-vector. 

The Field Tensor and Maxwell's Equations 

The vector and scalar potentials generate the field quantities E and H tarough 

the equations : 

E = - - = C~1~1 (in free space) 

Inspection shows that toes formulae are equivalent to tie rule given earlier 

for the construction of a sxew-symmetric 4-tensor Gib from a four-vector V, where now V = . 

Thus if we form the tensor Fi j = Deb{.— (O,2) = 0 x.A schematically 

F = 0 iEx iEy
-iEx 0 Hz -„y

-i±;y -Hz 0 H 

-iEz Hy -Hx i' 



Thus the tendency towards unification round in file t ieory so far is continued when we 
construct the relativistic form of the field vectors, except that we now find the yield 
quantities intermingled in a single skew-syIm etric 4-tensor. 

ale nave now relativistic analogues or representations of all file elements 
of ion-relativistic electrodynamic uneory, tLLe charge ana current densities, the ear 
aria vector potentials, and nOW true held vectors tleniselves. Ili each case the familiar 
non -rely rvis tic quantities nave been eerl to play dualistic roles wit l one an other in some 

way. The "mining" of tie field quantities E and H in t 1s theory is well illustrated by the 
transforuation equations for field. -,uantities between fraLles of reference ; these are 
derived simply from tie law of 4-tensor transformation. 

If in a frame ire measure the field quantities E and H, we may represent 
these in a tensor F. Ii a frame a' , the corresponding E' and H' are found in a tensor F' 
=There 

F' = (L)F(L) 

The matrix (L) for taro frames in standard configuration with relative motion along ti-re 
common x-axes was found in (I) , wuence 

F' 

Giving the equations 

EL 

ivy /c 0 0 
~S 0 0 

0 1 0 

0 0 1 

0 iEx iEy i~ 
-iEx 0 Hz -Hy

-iEy -Hz 0 fix

-iEz Hy -Hx C 

ivy/c 0 0 
-iv(s/c 1 0 0 

0 0 1 0 

0 0 0 1 

Hx =H 

- vHz/c) Hy = I(Hy + vEz/c) 
+ vhy/c) HZ = (Hx - vEJ7c) 

The miring or electric and magnetic p lenomena in these formulae provides a 
satisfying view of the observed inter-relation between electric and magnetic interactions 
in tine world at large. In particihlar, the effect of a magnetic field on a moving electric 
ctlarae ac iieves some tneore tical basis ; for if a charge moves along the x axis initially, 

and a magnetic field Hz is :applied in the rest-frame of an observer, tine transformation 
equations tell us tnat in tine rest -frame of the charge here is an electric field E , of 
magnitude v3Hz/c. Thus she charge iil be deflected in th e y-direction by tiis electric 
field. The deflection in tie y-ai.rection as seen by the observer at rest however, can:_ot 
be attributed to any electric field - it is ascribed to cue nilnierto mysterious "Lorentz 
force" of the form vx /c. Tue theory we are developing here then ,clearly has the merit of 
preaictine the rpearnce of this force when anarges move in the presence of magnetic 
fields - it is tie electric field in to rest=frame of the charge whici causes it to be 
deflected. 

It was remarked earlier that four identical relations hold between tale 
components of a ske-symaetric four-tensor, viz. 

cGij/dxk + ciGk/ox. + OGk./cxj identically = 0, v,ere i,j,k = 1,2,3 

3,4,1 
1,2,4 

With the tensor Fij above, and xl = ict, x2 = x, x~ = y, x4 = z, these 
four identities become 

V.11=0 and VxE=- 1 .ofc~t 
c 

These are four of the non-relativistic Maxwell Equations for t_:ie electromagnetic field, 
tzougz. As such tensor identities obviously hold in any frame of reference, being a property 
only of the structure of the tensor concerned, it follows timat these two of Maxwell's 
L uations are Lorentz invariant ; i.e.  if uriey nold unprimed in , they . mold primed in 3'. 



namely 

It may be verified directly that the other pair of Maxwell Equations in 
ordinary electrodynamics may be expressed in tine form 

Tne very possibility of representing them in tais form is sufficient to 
ensure tneir Lorentz invariance in form, as he only quantities appearing in them are 
4-vectors, a 4-tensor, and the scalar invariant c. Thus we find that Maxwell's Equations 
are Lorentz invariant. 

Comment on the Invariance of Maxwell's Equations. 

Tnis result of invariance of the equations of electrodynamics under a 
Lorentz transformation is scarcely surprising - it is a well-known property of the 
equations that they predict a aefinite velocity for electromagnetic radiation in 
vacuo, independent of the system of measurement. This very result is in conflict with 
pre-Lorentz relativity, but is of course the mainspring of the present formalism. The 
invariance we nave discovered merely slows us that the formalism is consistent within 
itself. As a result, electrodynamics in its classical form comes tnrougn the new 
discipline unscatned, unlike classical mechanics, where we found that the laws of motion 
took on a new detailed form. The value of relativistic electrodynamics lies therefore not 
in its better correspondence with experimental fact by production of more exact equations 
but in tie unification of concepts that are somewnat diverse in the classical theory. The 
transition to 4-dimensional formalism brings with it a more compact and illuminating 
descriptive system, anich is of value in itself. 

Field Invariants 

The properties of tine field tensor Fij will nest be used to examine some of 
the transformation properties of tae fields E and H.

Two invariant quantities can be formed by contraction of the tensor Fij, 

Fi~F
i~ 

and ~ 
jkl ij kl 

('fine invariant F1i  is clearly = .0) 

Taking these quantities in their three-ai.ensional form, we find that 

E~ - Hz = scalar invariant and E.H = scalar invariant. 

From these results tue following properties of the field transformations 
may be aeduced immediately ; 

i) if in any frame S, the fiJ.ds E =,na H are perpendicular, then E.H = 0. 
The invariance of this quataty tinerefore its lies that E' and H' will be perpendicular in 
all other inertial fram=es S' . 

ii) if in any S E.H = 0, it must be possible to find some inertial frame in 
which E or H = 0, i.e. if in some S E and H are perpendicular, it is possible to rind an 
inertial frame in which one or the other vector vanishes. Conversely, if in some S one or 
the of -ter• vector vanishes, E' and H' will be perpendicular in all other frames 3' . 

iii) relative relations between E and H are preserved in all frames. For 
ins ance, if in some S E is greater than H, it must be so in all inertial frames, from th 
first invariant. Similarly, vice versa, and similarly equality between the mag:.itudes of 
the vectors is common to all frames. 

The Lorentz Force 

pie nave already seen that in the limit of small relative vepocities, the 
transformation laws for the electric and magnetic fields dive rise to a term equivalent 
to the "Lorentz force" of classical electron agnetism. ode ssll now consider this in the 
language of the 4-dimensional representation. 

The Lorentz force is a ;uantity describing the interaction between currents 



and fields. ̀+fie should obviously wish to describe it in terms of a 4-force vector . We 
can see that Luis is possible from the field transformation equations and the definition 
of a 4-force arrived at in (II). There we saw that a 4-force '3 is relatea to the 3-force 
f as =  auica is exactly tie form imp Lied by tue transformation equations for tine 
fields, in terms of tie transformation of a rlianetic field in a frame in wnicu a charge 
is moving into an electric field in a fr°me in dinici it is stationary. To mane this 
precise, let us consider the most likely form for the 4-force arising from tae interaction 
of fields aria currents. Clearly it iill be  vector derived from the matrix F and the 
4-vector - . The simplest way of forming a 4-vector ' from tue quantities P and is 
clearly to put 

That ' defined in this way is a 4-vector is easily shown by the metods employed earlier 
in tiis article. Now the matrix F is, in partitioned form, 

F 
_ 0 it 

-iE H* 

where ±i aenotes tie 3 x 3 skew-sylmietric matrix associated wit. the 3-vector H through 
the rule Hi j = £.i jkHk . Then H x V in 3 dimensions is simply H*V in matrix form. 

Titus tue vector ' is given by ' - = 0 i is 

-iE H* 

= iEj 

cE - H* j 

Node the Lorentz force per unit volume in _Lyre limit of small velocities is 

so we see that we cd_? construct tue Lorentz 4-force tirouga tue rule 

'= F ./c 

The "tire co ponent" of tuis 4-force is m ien the rate of woruing of the electric field. 

The Lienard-`iecnert Potentials 

the a pearance of tue fv;_iliar Lorentz force in slightly codified form (the 
modification corresponding to the cua_ ge in tue aefinition of force in mecuanics, 
rather tian anything intrinsic to electrodynamics) is just one example of tie general 
preservation of classicial tZeory in the relativistic form. Once maxwell's e.;uations are 
seen to be invariant, no more need really be said, except to point out tue beauty of the 
four-dimensional structure. (The formal basis of electrodynamics includes or course the 
arbitrary gauge restriction - the conventional gauge V.A + (1/c)c)j/at is clearly written 

Qv4= 0 in -form, w+ lieu is Lorentz invariant by inspection). Results sucu as tale 
form of the field-current interaction, and tue reppesentation of energy floe in the 
Poynting vector, will clearly be carried over into tue relativistic t eory. One last 
point will be considered, however, and tat 13 tine form of tue potential produced •by a 
moving chafe. Suppose we observe a c urge moving in a, frame S. Let S' be u e frame in 
wuich tae charge is at rest. Then, if q' is the uanitude of tie carge, our assumptions 

of the 4-vector nature of $- , to etier k;ita tue equation of continuity, imply that 
$' = q 

T._e vector ' is seen to be (iq/r'; 0, 0 0) 
It follows roii the 4-vector nature of A that the corresponding potential 

vector in S is given by 

= (i~q/r' , vqJcr' , 0, 0) 

T is still contains tine kuantity r', however, and to obtain tae potential 
seen in S, we must transform this to the quantity r, and possibly other parameters 
measured in S. 



To do a iis, we note Fiat ,.ne potentials at a point in S rill depend at any 
instant not on the position O.i< tLe char e at fiat instal-c , out at an ectirijer instant 
liven by r = = - ct. Iii 5', similarly we require r' = - ct'. This enables us tO tr =.nsforrn r' out of file e.: ua ion for the po~enti .ls [3y t7si t_ie tras:Lornation for t', thus t 

r' = - ct' = - c (t - vx/c2) = r (1 + v1,/c) , riere yr is t o radial veloc 
of q as seen in S, = vxf r. 

Thus =ie can derive t_ie potentials in cnr fors 

~x = (q/c) •r 

r q 

y 

~r(1 + vz/c)) , rare square bracnets signify retarded values. 

Two generalisations of these fornulne Can be iiade. '1:.e first uses tae fact 
taut we anow : e choice o: "standaru configarc Lion" for two inertial frames not to 
sacrifice generality, as was sown in (I). 11erefo a ",-e nay _"encs ,lice the result obtained 

for the particular case of uniform velocity along me t_ ___iu tO he equations: 

and = + . c] 

Le secono. generalisation is peg"w s sore funaniiental. We know .trod the 
ordinary tnree-ci. ensaional eleo tzod.`amalcs mat the potentials cue to a moving cnarge 
cepend only on is velocit , and not on its acceleration. Tai L.ct enables us to 

gener:lice t c cove proof to cove.: me case of on arbitrarily  coving ccarge y our proof 

toot a uniforn v°alocity y  (for  no. . a. _ __ . "L dew value is of course tie s_ ale at all 
tines) . If tie po;,atials cO i G G cccelerution, then' tie egaatior s found 
above i'v"e us ate correct potential;-, a staat in 3, so long as we use me correct 

retarded value of Ins relocity v o.J ... : e cnarge - in O ., _er auras, me calculation is 

correct for tao instantaneous inertial trace in anion mae e large .my be consicjeredi at tie 

Apro"riate retarded value of t < Lae Ino`n le °z e of the dependence of me  potential on the ~ 

ccelermion of <.N cmrge would of course invaliuLte mis generalisation. 
The o i:un t,lals acre derived for : iii traril O iaoving cnarge are tio`an as 

mae treriard- 1iect:ierL notent als, 

Conclusion 

ryThe e~>pression of ezectres.ynaalcs obtained by application of t,ze metaods 
of articles (i) and (II) nas ach~ved results different in rind from those found in (II) 
for re1a.tivistic necnonics. The bom-ac equ:-;tions are sound. to cc uuodified, as is 

consiatent uaiti tale constant "lclooity of propagation of ele t?'onajietic ray -lion implied 
b, hax,vell's equncions in aneir "usual fore. The bringing Loge-ter of sinilt_r but 

differeniit.ted ua .titles i the t lree-d.imensional tneorj is acaivved by pursuing tie 

ti z4-dimensional l _ -" ne e. uations can til"tis .pp roach, and a degree of compactness in ritin

be ac iievect also . The derivation of me iienard-8iiecnert potentials uowS tut, in 

problems mere t o :aea-surement of i i:itance arid time aee: r s in tie solution, u-ie final 

results till be codified; tans iroaii'icaaciOn occurs entirely tiroug- the.tiaa='ou'_toon 

~, Y not 
r ofcO-U.~'C~.t. u.~LLi e:. p ~iOt'~~:.V≥`;r, 1(J. as Clot Oil® arising .~.rOm mF'. trrr".nsfO.i'iid,tiOY? rOy.)E'.rt1Os O.L ttie 

elec tiro agahetic q u: tides i. heoaselves . 
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