APPLES, TIDES, COMETS AND THE MOON
--UNIVERSAL GRAVITATION

The prohibition of Copernican teachings by the Roman Church forced the
development of physical science into North-western Europe, where the next great
steps were taken by the French, Dutch and English. The decades from 1640 onwards
to the end of the Seventeenth Century are regarded as the dawn of the modern scien-
tific method, leading to the brilliant daylight of Sir Isaac Newton's "Mathematical
Principles of Natural Philosophy", which can still be described as the most influ-
ential scientific treatise ever written. This period, known to historians as the
Age of Enlightenment, saw the application of the experimental method and mathema-
tical logic to many scientific fields and witnessed the development of the philo-
sophy of the Universe as a mechanical system, describable by the same laws of
physics that were embodied in the design of terrestrial machines. We shall be
concerned only with those elements of scientific progress in this period which relate
directly to the problems of the Solar System and of cosmology, but it is well
to realise that the scientists who grappled with these problems were also attempt-
ing to apply their new-found skills in other areas of research, such as optics

and the behaviour of gases and fluids.

1. Rene Descartes (1596-1650)

The Frenchman Rene Descartes (Figure 1) was the first to construct a
comprehensive philosophy rejecting every precept of the Aristotelians. He argued
that motion was not directed towards some goal by animalistic desires of matter,
but was an entirely mechanical, or mindless attribute of matter that could be
completely described by changes in its co-ordinates in space with time (Descartes
was the inventor of co-ordinate geometry in the form that we use it throughout
this book). He argued also that the total "quantity of motion" in the material
world was Ppreserved, as it would be in a frictionless machine.

He and his followers saw the Universe as a complex machine whose workings
followed mathematical principles, and whose phenomena should all be explicable

as some form as motion--He wrote:

"We must conclude on all counts that the objective external realities
that we designate by the words 'light', 'colour', 'odour', 'flavour', or
'sound', or by the name of tactile qualities such as 'heat' and 'cold' ...
are not recognisably anything other than the powers that objects have
to set our nerves in motion in various ways".



Descartes viewed the human body itself as a machine, e.g. he construed the circula-
tion of the blood through the heart to be the mechanical action of a machine devoid
of mystical qualities and describable (if not actually described) by mathematical
models. Because he considered all that was dynamic in the world to be a consequence
of the motion of matter, it was crucial to his world-view that matter as a whole
preserved its "quantity of motion".

Descartes argued that motion could be transferred from one body to another,
but that the total quantity of motion imbued in the Universe at its creation was
conserved. The agency of change in motion was force, and the measure of force was
the change in motion which it produced. Within this framework, Galileo's deduction
that a projectile in motion preserved its horizontal velocity finally received its

valid generalisation--that matter has an attribute of "inertia'--reluctance to

change its motion rather than desire to seek a certain place. Anyone who has tried

to bring a moving boat into dock, to maneouvre a heavy packing case on a trolley
running on smoothly-rolling casters, or to drive a car around a tight corner on an
icy road, will recognise the attribute of matter which Descartes regarded as fund-
amental. A force--a push or a pull--is needed to change motion, not to maintain
it, in the absence of friction. The amount of force needed to change motion depends
both on the quantity of matter moving and on the speed (i.e. velocity) with which
it moves. The idea of quantity of matter is related to the word "mass", and so we
shall use the symbol "m" to denote the measure of quantity of matter; the precise
definition of this measure must wait a while. If "quantity of motion" increased
both with increasing mass and increasing velocity, then what algebraic form should
measure ''quantity of motion"? We shall see that both momentum (mv) and energy
(%-mvz) provide meaningful measures. Descartes believed that our qualitative
concept of force should be related to changes in the quantity of motion as measured
by momentum (mv).

He also recognised that changes in direction of travel were as much changes
in motion as were changes in speed. To clarify this point, we can reconsider
Galileo's projectile experiment, in which a ball was rolled down a ramp and launched
horizontally across the room. As the ball leaves the deflector travelling horizon-
tally, it has no vertical motion. But whilst it continues to travel at constant
velocity horizontally, it experiences a vertical acceleration--its vertical motion
changes. Descartes' description of the forces in this situation would therefore be
exactly opposite to the Aristotelian version, in which there was no force associated
with the natural (vertical) motion but a steady force (of unknown origin) was supposed

to propel the horizontal motion. Descartes would have argued that there was a
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: : : i izontal
force (of unknown origin) accelerating the vertical motion, while the horl

less and maintained by matter's property of "inertia'.

(increasing) the vertical velo-

The verti-
motion was force

cal force changes the vertical motion by changing
city. The projectile therefore moves on a steepening (parabolic) curve: its
total (two—dimensional) velocity is the combination of its horizontal and vertical

components, as in Figure 2a. The total velocity therefore changes both magnitude

and direction as the projectile falls. In modern mathematical language we say
that a quantity which carries both magnitude and direction information is a vector.
The total velocity of Galileo's projectile is describable Dby a two-dimensional
velocity vector which we will call 3, the arrow over the symbol reminding us that
direction information is being carried in the symbolism. The 3 of the projectile
at any instant can be regarded as the sum of a horizontal velocity component VX,
which supplies information about the horizontal displacement Ax which will occur
in the next At, and a vertical velocity component vy, which supplies information
about the vertical displacement Ay which will occur in the next At. If we regard

the rule for two-dimensional vector addition as being that embodied in the "vector

diagram" of Fig. 2b then we can write

->
v

+ 3 .
where As is the vector displacement (change in position) in time At, and for the

projectile

= Ax _ .
=T constant (Galileo); 5 =m 0
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Indeed, anything other than uniform motion along a straight line (or rest) is

a motion in which ; changes in time, and so implies accelerations and forces.
Descartes was only a step away from Newton's thinking in these matters.

It is unfortunate that Kepler's Laws, particularly the Third Law, had no currency

in France for most of Descartes' career, so yet another brilliant mathematical

mind was kept from analysing the Solar System in the way warranted by Tycho Brahe's

data.

2. Christian Huygens (1629-1695)

The most prominent Dutch disciple of Descartes was Huygens, who is most
renowned today for his studies in the nature of light and in the design of clocks.
Huygens did however make a most important contribution to the mathematical des-
cription of motion--namely the formula for the acceleration of a body moving uni-
formly on a circle. Newton obtained this result independently but it was Huygens
who first published it, in 1673.

The most difficult aspect of the problem is to see the direction of the
acceleration. Acceleration is also a vector quantity; it is the rate of change
of velocity, which is a vector quantity. If a vector velocity 3 changes by an

> !
amount Av (see Figure L), then

Referring back to Figure i we can see that both Ve and vy change during a uniform
circular motion, so that a must have both x and y components. To disentangle the
problem, we need to consider a very short time-interval At during the motion. In
that time, ; changes from 31 to 32 as in Figure 5; $2 has the same magnitude
(speed) as 31, but is in a slightly different direction. By the rule for vector
addition, 32 = 31 it A? where Ag is the change in velocity indicated in Figure 5.

>
As At + 0, Av becomes more and more precisely at right angles to ;1 and towards

the centre of the circle. Huygens indeed deduced that a body travelling around

a circle at uniform speed has a constant acceleration in the direction towards the

centre of the circle. This centripetal (centre-seeking) acceleration changes

direction continuously as the body travels around the circle, but is always at
->
right angles to the velocity v. Thus, in Figure 3, when Vo is a maximum and v. = 0

it ds vy which is changing; at this point a, = O and ay is a maximum.
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Huygens also calculated how the centripetal acceleration varies with the
magnitude of the velocity v and the radius r of the circle; the derivation is given

in Appendix 1. The result is that

It will be useful to discuss this result using a modern example--the motor car. Now
that we have arrived at careful definitions of velocity and acceleration you may
realise that every car has three accelerators as standard equipment, i.e. three con-
trols which you can use to change its velocity. There is the one we conventionally
call "the" accelerator--the gas pedal. Providing more fuel to the engine increases
the force which the engine can transmit to the drive wheels, thus making the car go
faster in a straight line. The A; produced is parallel to the 3, so the speed
increases with time. But the brake pedal is also an accelerator. By increasing
friction at the wheels when the brake linings are pressed against a moving surface
we introduce forces which produce a Az that opposes 3, so the speed decreases with
time. This is sometimes called "deceleration": wusing the scientific language of
motion it is Just an acceleration in the opposite direction from the one produced by
pressing down on the gas pedal.

The third accelerator--and this is the one related to Huygens' idea--is the
steering wheel. If you wish to drive around a bend in the road at constant speed you
must change the direction of the car's velocity, something neither the gas pedal nor
the brake can accomplish. When you turn the steering wheel you apply a force which
turns the front wheels of the car and if there is sufficient friction between these
wheels and the road this results in a sideways force on the car. If your tires are
too bald, or the road is too slippery, you discover the principle of inertia as you
travel straight ahead at constant speed and fail to turn the corner despite the fact
that you have turned the front wheels. If you have good tires and the road is in
good condition, the force between the tires and the road can giveyour car an accelera-
tion towards the inside of the bend, changing your car's velocity so that it can move
in the same direction as the road. If you look at Huygens' formula for the amount of
the acceleration you will see that it embodies some well-known experiences in driving.
If your tires have a given amount of friction with the road you can provide a given
acceleration "a" with a turn of the steering wheel. If you go into a bend of radius
r travelling at a certain v, this acceleration may not be sufficient to turn the bend

——the acceleration needed goes up as v2, If you exceed the maximum v for a given r
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by even a small amount, you will fail to change your car's direction of travel
enough to curve around with the road. If the "safe speed" is v = 20 miles per hour
and you try to travel around the curve 20 miles per hour too fast, i.e. at 40 miles
per hour, then the acceleration you need is (40)2 = (20)2, or four times, greater than
what you can safely provide, even with much squealing of tires. But if the safe speed
is v = 60 miles per hour and you again exceed it by 20 miles per hour, the acceleration
is only (80)2 %+ (60)2, or about 1.8 times greater than you can safely provide, and
you may 'make it". Finally, the "safe speed" depends on r, the radius of the bend.
If r is small, than a = v2/r is large even for small v--tight corners have to be taken
slowly. But if r is large, a = v2/r is small except at very high speeds--gentle curves
are easy to negotiate. You can see that driving cars gives an intuitive "feel" for
Huygens' centripetal-acceleration formula.

With this formula, those who were lucky enough to find Kepler's Third Law in
the "Harmony of the Worlds" were in a position to understand what everybody today knows

as "the force of gravity".

3. The Inverse Square Law of Gravity

The Royal Society for the Promotion of Natural Knowledge was founded in
London, England in 1661, its nucleus being a group of scholars who had been meeting
at Wadham College, Oxford throughout the previous decade to discuss controversial
matters of science. The first Curator of Experiments was Robert Hooke (1635-1T703),
a follower of Descartes' mechanistic views who made important contributions to the
sciences of elasticity and optics in addition to his work on gravity (as the vertical
acceleration of bodies near the Earth's surface was now called). A matter of some
concern to the members of the Royal Society was whether or not the acceleration due to
gravity varied with height above or below the Earth's surface--Galileo's result that
it did not depend on the mass of the accelerated body was now well known. On December
3, 1662 one Dr. Power reported to the Society the results of an experiment wherein
a pound weight and 68 yards of thread had been weighed on a balance. The weight was
then lowered on the thread into an open mineshaft while the balance remained at ground
level (Figure 6); Dr. Power claimed that the balance recorded a loss in weight of about
an ounce, suggesting that gravity decreased rapidly towards the centre of the Earth.
Three weeks later Robert Hooke attempted a similar experiment and reported it to

the Royal Society thus:
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"I took an exact pair of scales and weights, and went to a convenient
place upon Westminster Abbey ... Here counterpoising a piece of iron (which
weighed about 15 ounces troy) and packthread enough to reach from the top
to the bottom, I found the counterpoise to be of troy-weight seventeen ounces
and thirty grains. Then letting down the iron by the thread ... I tried what
alteration there had happened to the weight, and found that the iron prepon-
derated the former counterpoise somewhat more than ten grains. Then drawing
up the iron and thread with all the diligence possibly I could, that it might
neither get nor lose anything by touching the perpendicular wall, I found
by putting the iron and packthread again into its scale that it kept its
last equilibrium; and therefore concluded that it had not received any
sensible difference of weight from its nearness to or distance from the
Earth. I repeated the trial in the same place but found that it had not
altered its equilibrium (as in the first trial) neither at the bottom, nor
after T had drawn it up again; which made me guess that the first prepond-
erating of the scale was from the moisture of the air, or the like, that
had stuck to the string and so made it heavier."

Hooke went on to suggest that Power's experiment might have been influenced
by air moisture or drafts. The Royal Society members continued experiments in this
vein for several years. The experiments show two things: that the idea that the
gravitational acceleration might vary with height was quite public, and that the
actual variation near Earth's surface was known to be very small.

The members of the Society were also appraised of Kepler's Third Law of
Planetary Motion and at some time between Huygens' publication of the formula for
centripetal acceleration and the year 1679 it appears that the following calculation
became known, at least to Robert Hooke, his close friend the architect Sir Christopher
Wren, and the astronomer Edmond Halley.

Kepler's Third Law refers to the time taken to perform elliptical orbits of
various sizes around the Sun. The actual ellipses are, however, very close to circles
for most of the planets, so Huygens' formula for the centripetal acceleration on a

circle should approximately give the planetary accelerations. Thus a planet

travelling with velocity v on an orbit which was nearly a circle of radius r would have

an acceleration

towards the Sun

o
1l
= |<1

But an orbit of radius r would have a total length that was equal to the
circumference of the circle, i.e. 2mr, and be performed in time T. The magnitude

of the velocity of each planet around the Sun would thus be

_ Circumference of Orbit = 2mr
Orbital period 1y
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The acceleration of each planet could therefore be written in terms of the obser-

vable properties r and T:

But Kepler's Third Law showed that T2 = kr3 for the planetary orbits where k was a
constant. The expression kr3 could therefore be substituted for T2 on the bottom line

of this relationship, to give:

Thus Kepler's Third Law amounted to the statement that the planetary accele-

rations decreased with distance from the Sun inversely as the square of the distance

of the planet from the Sun, i.e. a planet three times further from the Sun than

another would have (1/3)2 or 1/9 of the other's acceleration. In fact the planetary
orbits were not circles, but ellipses, so that both v and r varied around the orbit.
An exact mathematical treatment was obviously complicated, but Hooke, Wren and
Halley wondered if in fact all of Kepler's Laws might be reduced to a single inverse-
square law of gravitational acceleration.

Hooke speculated along these lines in letters which he wrote to Isaac
Newton in 1679. The circumstances of these letters will be described below. The
next discussion of the problem appears to have been in January 1684 when Halley, then

a man of twenty-eight, by his own account

"came one Wednesday to town, where I met with Sr. Christ. Wren and Mr.
Hook, and falling in discourse about it, Mr. Hook affirmed that upon that
principle (of the inverse square law) all the Laws of the celestial motions
were to be demonstrated, and that he himself had done it; I declared the
i1l success of my attempts; and Sir Christopher, to encourage the Inquiry,
said that he would give Mr. Hook or me 2 months time to bring him a
convincing demonstration thereof, and besides the honour, he of us that did
it should have from him a present of a book of LOs. Mr. Hook then said
that he had it, but that he would conceale it for some time, that others
triing and failing might know how to value it when he should make it
publick, however I remember Sir Christopher was little satisfied that he
could do it, and tho Mr. Hook then promised to show it him, I do not yet
find that in that particular he has been as good as his word".

In August 1684 Halley visited Isaac Newton in Cambridge and asked the then-

famous mathematician what would be the form of the orbit for a bhodv movino 11mder
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an acceleration which varied inversely as the square of the distance from a second
body. Newton had immediately answered "an ellipse", but could not produce a proof
on the spot. In November 1684 Newton lectured on these matters in the University of
Cambridge and Edmond Halley pressed him to make his knowledge of the subject more
widely known. Thus it was that Sir Christopher Wren's challenge was answered
neither by Hooke nor by Halley, but by Newton. And not with a few pages of mathema-
tical calculations, but with what came to be regarded as the most important scien-

tific book of any age--Newton's "Principia".

4., TIsaac Newton

Newton (Figure 6 ) was born on Christmas Day, 1642, on a farm near the village
of Colsterworth in Lincolnshire, England. While at school in nearby Grantham he
proved to be a moderately able but exceedingly absent-minded scholar, more suited
to an academic career than to farming. He went to Trinity College, Cambridge in
1661 as a "sub-sizar" or poor scholar who paid his way by doing odd jobs and waiting
upon his tutor, who was Isaac Barrow, then Professor of Mathematics at the University.
Newton took his degree in 1665 without particular distinction, and was then forced
to leave Cambridge until the Fall of 1667 because the University closed for fear
of spreading the Plague, which caused widespread death in London in the Summer of
1665. Newton spent these years on the farm at which he was born; it was during this
period of solitary contemplation that he, by own own account, laid the foundations
for the great accomplishments in mathematics, gravitation and optics for which he
is now famous. We say "by his own account", for there is little concrete evidence
of just what he did do at this time, and Newton described what had occupied him during
these years only in 1716, when he was T3, and this after other scientists, including
Hooke, had earlier disputed Newton's priority in making some discoveries.

What is clear is that the Newton who returned to Cambridge in 1667 had
acquired an intellectual power that impressed those around him very greatly. In
1669 Isaac Barrow resigned his prestigious Professorship in favour of Newton, who
thus became at the age of twenty-eight one of the most senior mathematicians in
England. At this time his work was most visibly associated with the field of optics.
He invented and constructed the first reflecting telescope (Figure T ), whose
design eliminated the false-colour effects associated with the lensed (refracting)

telescopes of his day. The invention brought much interest from the Royal Society,
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and in 1672 Newton presented his first scientific paper to the Society, a discussion
of the nature of light and colour based on his experiments and explaining the
superior performance of his telescopes. The paper was revolutionary in its time

and was vigorously criticised, mostly incorrectly, by numerous members of the
Society. Newton's reaction to the criticism is exemplified by his subsequent letter
to the German mathematician Gottfried Leibniz, in which he writes:

"I was so persecuted with discussions arising from the publication of my
theory of light that I blamed my own imprudence for parting with so substantial
a blessing as my quiet to run after a shadow".

Newton avoided the Royal Society as much as possible for the next years--
his "quiet" served him better than discussions with its members, whose persistent
questions, relayed to him by the Society's Secretary (who seems to have wished to
set Newton at loggerheads with Hooke) did not help Newton advance his own thinking.
Newton was capable of immense concentration in the solitude of his rooms in Trinity
College, often forgetting to eat, or, on going out, neglecting to arrive at the
destination he had in mind when he left. He was essentially a recluse whose own
mental capacity served him better than the interaction with his contemporaries.

In 1679 Hooke became Secretary of the Royal Soceity and attempted to per-
suade Newton to renew contact with his fellow scientists and to pass opinion on
some ideas which he (Hooke) had published in 16T4k. These ideas were that a planet
would move in a straight line in the absence of any force, so that what kept a

planet in orbit must be a force directed towards the Sun, that force decreasing

inversely as the square of the distance from the Sun. Hooke was not, it will
be noted, restating Kepler; Kepler had been quite Aristotelian at this point and

had presumed that a force along the orbit was needed to propel a planet round the

Sun. Huygens' formula for the centripetal acceleration had been published in 1673,
and Hooke's remarks were likely inspired by that--possibly by a calculation from
Kepler's Third Law similar to the one we made in the previous section. Again by
his own account (to Halley in 1686) but not publicly, Newton went to work on the
theory of the planetary motions and solved the problem of showing that all of
Kepler's Laws could be explained from such an inverse-square law of attraction.
However, it was not until 1684, when Halley went to Cambridge to discuss the matter
with him, that Newton intimated to anyone that he, at last, had wrestled the 2000-
year-old problem of the planetary motions to the ground.

To modern ears it seems incredible that any scientist could solve such a
fundamental problem and keep the answer to himself, for the free and speedy communica-

tion of ideas is almost universal today in the scientific community. Newton's
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later claim that he had dealt with the solution in outline during the Plague years
implies that he kept his knowledge to himself for nearly twenty years while others
such as Huygens, Hooke and Halley struggled on in public. But Newton was both
reclusive and absent-minded as well as being a formidable mathematician; his
ability to make great strides in theoretical and practical science without need
for contact with his contemporaries is demonstrated by what he did publish, and
he may gave given little consideration to the interest others would have had in
knowing of his achievements sooner.

Halley's visit persuaded him to write down what he knew of planetary motion
and of gravity however, and this Newton did in his "Principia", sending the
manuscript of the first of its three "books" to the Royal Society in April 1686.
Hooke felt that he deserved some acknowledgement for having put the problem to
Newton in the way he had in his letters of 1679. Newton claimed to have understood
the inverse-square law before Hooke had asked him for his opinion on it. The
dispute might have become very acrimonious had Halley not mediated it, to some extent
out of fear that the later "books" would not see the light of day if Newton were
too offended. In any event, in the printed version of the treatise, Newton acknow-
ledges that Wren, Hooke and Halley had suggested the inverse-square law before the
publication of his own ideas.

As published, the "Philosophiae Naturalis Principia Mathematica--Mathematical
Principles of Natural Philosophy", usually referred to as the "Principia", presents
in the first "book" a discussion of motions in empty space, in the second a treat-
ment of motions in circumstances where a material medium is involved--including
fundamentals of fluid flow around moving objects (applicable to ship hull and
even (today) aircraft design) and of wave motions, and in the third an analysis
of the structure of the Universe. The scope of the third book was, and is,
breathtaking; in it Newton discussed the motions of Jupiter's satellites of the
Moon, and of the planets in their elliptical orbits, then showed how to calculate
the masses of the Sun and planets, estimated the average density of the Earth,
calculated the details of the nonspherical shape of the Earth, explained the
precession of the poles, discussed the disturbing effect of the Sun on the Moon's
orbit, explained the tides, the orbits of the comets and certain phenomena of
pendulums. The "Principia'" completely dominated the science of motion for the next
two hundred years, and still provides the fundamental basis for teaching that branch

of science in today's universities. We will now examine some of the basic concepts



