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Abstract.

This is the first of three lectures to deal with problems in imaging wide fields-of-view. Its
goal is to quantify the first two effects described in Lecture 17—bandwidth smearing and time-
average smearing. Both effects cause the synthesized image to be distorted in ways that cannot
adequately be described (except locally) as a convolution of the true sky brightness distribution
with a spatially invariant point source response function. Rather, the degree of smearing
is a function of angular distance from the delay-tracking center (for bandwidth smearing)
or the phase-tracking center (for time-average smearing). The effects therefore persist after
simple (position-independent) deconvolution with methods like ‘CLEAN’ or MEM. Since these
distortions cannot be remedied by calibration (or self-calibration), it is important to devise
synthesis observing strategies that hold the distortions down to acceptable levels. We wish now
to characterize the two effects mathematically and to justify the approximations embodied in
the practical formulae used elsewhere.

1. Bandwidth Smearing (Chromatic Aberration)

1.1. General description of the effect

In Lecture 1, the basic Fourier transform relation between the monochromatic
visibilities V,, and the monochromatic intensity distribution /,, was given in Equa-
tion 1-9:

(o] o0 .
L(l,m) = / / Vi, (u, v)e2 ™) gy dy (18-1)
—00 J —0C

In practice, although the receiver passbands are of finite width Av > 0, we treat
all the visibility data as though they correspond to measurements at a single
central frequency, vy. To see how this distorts the synthesized image, consider
an infinitesimal bandwidth dv centered on frequency v. The actual spatial fre-
quency coordinates of a visibility for frequency v are, let us say, (u,,v,). But
when handling the data, we instead assign the frequency-independent coordi-
nates up = %lu,, and vg = Zlﬁlv,,, as though all the data had been taken at
frequency vy. Within any given visibility sample, the data from all incremental
bandwidths dv within the passband Av are averaged, with weights determined
by the instrumental passband shape, and are assigned the same ug and vy.

How does this imprecision in our handling of the (u,v) coordinates affect
the computed brightness distribution? We can answer this by using the simi-
larity theorem of Bracewell (1978), which states (see also Lecture 7) that if the
functions X (x) and z(u) form a Fourier transform pair in n dimensions, i.e., if
X = §z, then rescaling the coordinates in one domain by a factor « corresponds
to rescaling the transform in the other domain by the reciprocal scale factor 1/¢,
and renormalizing the amplitudes, so that

1
o™

X (z) = Fz(au). (18-2)

In our case, n = 2, & = /v, X is to be identified with I, and z with V.
371
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How does the passband shape affect the result? In the general case, the it
antenna and its associated electronics would be described by a voltage band-
pass characteristic g;(v'), where v/ = v — 1. The power bandpass of the i—j
interferometer pair in an array would then be G, ;(v') = ¢;(v/ )g; (V). We will
assume, however, that all antennas and electronic systems are identical, so that
the whole array is characterized by a single power bandpass function G(¢/). In
this case, which is a major design goal for nearly every synthesis array, the effect
of the passband shape can be described by a multiplication in the (u,v) plane,
as we now show.

_ First we rewrite Equation 18-1 in terms of the bandwidth-smeared intensity

I(l,m) and the frequency-dependent u’s and v’s:

~

o x .
I(l,m) = / / V (ug, vo)e®™H(¥ol+v0m) gy duyg (18-3)
—00 J —00

where the smeared visibilities V' are obtained from the true V’s by rescaling,
weighting by the passband function G(v/) and then summing over all infinitesi-
mal bandpasses dv. In summing the visibilities over frequency, we must take a
further important effect into account. The delay-tracking is appropriate to the
center of the field-of-view and the center frequency vy. For signals at frequency
v arriving from a direction (/,m) at the interferometer with spatial frequency
(ug,v0), the inserted delay is in error by an amount 7 = (ugl + vom) /vy, so the
phase is shifted by 27 (v — vp)7 = 27/ (ugl + vom)/vy. The expression for the
smeared visibility is therefore

V(UO,’U()) =

1 o0 v v v 2 27ril’i(u l+vom)
1% —,vn—|—) G/ vo \OETEO gt (18-4
ff_’?,oG(v')du'/_oo (“"uo 0 )(m) (e V. (184)

Now consider the bandwidth smearing of a point source with unit amplitude.

As Equation 18-4 describes averaging the visibilities V' along a radius in the

(u,v) plane, we can choose a source on the l-axis, at (lp,0), with no loss of

generality. Using the shift theorem for Fourier transforms (Bracewell 1978), the
true visibility is

V(u,v) = e 2riulo (18-5)

The array measures this at points described by the sampling function S(uo,vo),
and the data are multiplied by a weighting function W (ug, vo) when making the
image (see Sec. 2.2 of Lecture 7). Inserting the sampled and weighted point
source visibility into Equation 18-4,

~

% *° —2miug<1lp v 2 N 271 e (uol+vom) I}
(ug,v0) = S(ug, vo)W (ug,vo)e vo — ) Gp(¥)e" v dv',
-0

)
(18-6)
where Gp,(v') is the normalized passband function G(v')/ [ G(v')dv/'. If the

fractional bandwidth is sufficiently small, we can put (v/v9)? = 1. Equation 18-3
for the bandwidth-smeared intensity can then be written as
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~

I(l,m) = (18-7)
[ 2ming L1 2ming L1 ;
/ [/ S(ug, vo)W (ug,vg)e” 0¥ G (v )e” s du’] e?muol gug §(m).
—00 LJ —o0
Rearranging the exponentials, we can rewrite Equation 18-8 as
I{lym) = (18-8)
e ; ° 2mitig - (11
/ S(uo, vo) W (uo, vg ) e2™ito(—to) [ / G (v)eX™ ™ 0ug _°)dy’] dug 6(m) .
—00 —00

This is an interesting form for I —the term in square brackets is the Fourier
transform over v/ of the normalized passband function, to an argument that is
the delay 7 = %2(l — lo) corresponding to position offset { — lg. It is therefore

useful to define a delay function d(7) related to the passband function G(v') by
A7) = T g [ GO (18-9)
2. G A J_o )

The effect of finite bandwidth on the measured visibilities can be described as
multiplying the true visibilities by this delay function, which depends on both
ug and [ — [p. _

Notice also that Equation 18-9 shows that I(l) is the Fourier transform over
ug of the product of four functions—the sampling function S(ug,vg), the weight-
ing function W (ug,vg), the pristine visibility function e=270lo and the delay
function d(7). Equation 18-9 can therefore be rewritten, using the convolution
theorem, as the convolution of four transforms:

oo
e2ﬂiu°(l—l°)du0 6(m) * / d(T)CQﬂ'iuolduO . (18-10)

—00

f(l,m) =SS*SW*/OO

—00

The first two convolutions give us the narrow-band image—a “dirty beam” B =
$S*SW centered on (lg,0). The third is a convolution with a position-dependent
function that we will call the bandwidth distortion function D(l). This distortion
function is the Fourier transform over ug of the delay function d(7). Unlike the
dirty beam B, the width and amplitude of D vary with radial distance [y from
the delay center. Furthermore, D is always oriented along the radius to the
delay center. The final image I is therefore a simple, position-independent,
convolution §S *x §W % I x D only in the trivial case of a single point source
I. The bandwidth distortion of an extended image can be thought of as a
“radially-dependent convolution”.

The above analysis shows that the bandwidth effect can be characterized by
three related functions, the (power) passband function G(v'), the delay function
d(7) and the one-dimensional (radial) distortion function D(l). We now give
explicit forms of these functions, and derive the final “point source response”,
in a few simple cases. In what follows, we emphasize the radial symmetry
by replacing the coordinate [ with the radial coordinate § = V{2 + m?2 where
appropriate.

Just for a moment, let us explicitly include the dependence of the distortion
function D on two radial coordinates, 8 and y. Then Equation 18-10, expressing
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the bandwidth smearing effect on the synthesized image T locally as a convolution
of four functions, can be recast in a more general form—valid for the entire
image—

~ * 16y )
I(l,m) = BxI 12+ m2 — 6y,6p) do
am) = [~B+0) (So2m, —) DY 0200) dfl
If D(6,60) had no dependence on 6y, then Equation 18-10 would reduce to
a convolution equation, since the distortion function appearing in the above
equation would be a function solely of the difference 6 — 6.

1.2. Square bandpass, no tapering, square (u,v) coverage

This is the case that was used to illustrate bandwidth smearing in Lecture 17
(see Fig. 17-2).

Passband function:

1, if V| < Av/2, °
G() ={ 0 ot}|1e1‘|wise, / thus /_ GW)a/=av. (81)
Delay function:
d(r) = sinc 22 Uou+mev) (18-12)
)
Distortion function:
D(9) = A1/6’011 (AVOO) , where II(s) = { 0, otherwise. (18-13)

Note that the width of this distortion function increases as Av 6y, whereas its
amplitude decreases as 1/(Av 6y). This illustrates the principal characteristics
of the bandwidth distortion—reduction in amplitude, and radial broadening, of
the point source response. It also illustrates that the two effects preserve the
integrated flux density of the distorted response.

Sampling function:
S(u,v) =I(u/A) II(v/A) (18-14)

(i.e., a filled square of side A, with longest baseline = A/v/2).
Weighting function:
W(u,v) =1 (uniform weighting).

Dirty beam:
B(l,m) = sinc Alsinc Am (18-15)

The smeared point source response is Bp, the convolution of the dirty beam
B (Eq. 18-15) with the distortion function D (Eq. 18-13). At any given offset
A0 from the beam center at 6y, the amplitude of this response is

Ag+82%

. 144 Y0 . »
Bp(A0,6)) = Ay /Ao sinc A6 df (18-16)
14 . Av by . Av
= A(A - —
T AA O [Sl (7r (Af + 570 )) Si <7rA(A9 27 ))] ,
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where Si(z) = fom s‘;” dt is the sine integral, a standard special function. The
HPBW of sinc A8 is fgpgw = 1.206/A. Defining

n = wAOupsw = 3.79,
A6

a = = offset from peak response in undistorted HPBW's, and
fupBw
Av 9() . . . . /

g = — = fractional bandwidth x radius in HPBW's,
vo BupBw

(18-17)

we can rewrite Equation 18-17 to get the following expression for the degraded
beam shape Bp = B * D as a function of offset A8 from the peak response at
0y from the delay center,

1 (.. By« B
e (Sln(a + -2—) — Sin(a — 5)) . (18-18)

The peak I of the degraded response to the point source is evaluated by setting
A6 = 0, so that « is zero, and substituting into Equation 18-18. The fractional
reduction in amplitude of the point source due to bandwidth smearing, R, is
the ratio I /Iy, where Ij is the peak response for Av = 0 (Eq. 18-18 witha =0
and 8 = 0). For this case,

BD(Aea 90) =

I
RM=—=~&W

=3 (18-19)

1.3. Square bandpass, circular Gaussian tapering

For this case, the bandpass, delay and distortion functions are identical to those
in the previous example (Egs. 18-11 through 18-13).

Sampling function:
S(u,v) =1 (over an area large relative to the scale of the taper). (18-20)
Weighting (tapering) function:

_202 2, .2
W(u,v) = \/—Q;IPBW exp il GHPBE;‘;(U +v7) , (y=2vIn2 =1.665).
(18-21)

Dirty beam:
202

B(0) = exp

3 . (18-22)
OtipBw

The calculation of the degraded beam follows that in Section 1.2, leading
to

Bp(A8,6y) = 2\/; (erffy(a + g) —erfy(a — g)) , (18-23)

where erf is the usual error function. The reduction in amplitude of a point
source relative to zero bandwidth is therefore

I _vr fvﬁ

Ryz
A ’Yﬁ

(18-24)
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1.4. Gaussian bandpass, circular Gaussian tépering

Passband function:

2,02 00 A
G(V') = exp 7 V2 , where vy =2vIn2 = 1.665,thus/ G dv' = VT v
(Av) -0 Y
(18-25)
Delay function: , ,
- 2
d(r) = exp —2Y) ‘j"’;‘*mf’”’ : (18-26)
Y Y
Distortion function:
Y0 —v226?
D(6) ——os (18-27)

T VT Ave, TP (Av)2e2

For this case, the sampling function is again unity, the weighting function is
the Gaussian specified by Equation 18-21, and the dirty beam is the Gaussian
specified by Equation 18-22. The degraded beam is

1 —CXQ’)’Q
Bp(A8,60y) = ) 18-28
DA = e m P T (16-28)
and the reduction in the peak response is
I 1
Ray (18-29)

L ix @

1.5. Graphs of the main bandwidth smearing effects

Figures 18-1 and 18-2, adapted from Perley (1981a), show how the two main
effects of bandwidth smearing vary as functions of the dimensionless parameter
g = %_:ﬁoﬁ, for each of the three combinations of band shape and tapering
discussed above. The three curves are strikingly similar. When plotted in this
way, the variations in undegraded beamwidth due to different (u,v) coverage and
tapering are absorbed into the ratio 3, emphasizing the utility of this parameter
when describing the bandwidth effect.

Note however that the definition of 3 obscures the true frequency depen-
dence of the bandwidth effect for a given synthesis array. Equation 18-9 shows
that, for a given array, the delay function depends only on the shape of the
passband, not on the observing frequency. The center frequency vy appears in
the definition of 8 only because it multiplies fgppw in the denominator. The
product vofuppw is independent of frequency for a given array. Despite this, it
is convenient in practice to factor S in this way.

2. Time-Average Smearing

2.1. General description of the effect

Averaging of the visibility data is another cause of image smearing. Assuming an
averaging time 7,, these averaged data from each correlator are assigned (u,v)
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Figure 18-1. The reduction in peak response to a point source, I /I, for each of
the band shape and taper combinations discussed in Sections 1.2 through 1.4, plotted
as a function of the dimensionless parameter 3.
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Figure 18-2. The broadening of the point source response relative to zero band-
width, for each of the band shape and taper combinations discussed in Sections 1.2
through 1.4, plotted as a function of the dimensionless parameter 3.

values corresponding to the mid-points ¢ of the averaging intervals, although the
data come from time ranges [0t| < 7,/2 centered about these mid-points.

For a source at the North or South Celestial Pole, the sampling function is
confined to a set of concentric circles in the (u,v) plane, generated by rotating
the spacing vector at the Earth’s rotational angular velocity we (7.27 x 1075
rad sec™!). A time offset Jt in the assignment of u and v would correspond in
this case to a rotation of the visibility function through an angle wedt. This
would cause the image to be rotated through the same angle, since the Fourier
transform commutes with rotations (see Sec. 4.1 of Lecture 7). For an image
centered on one of the celestial poles, the effect of time averaging is therefore
equivalent to averaging a series of images that are aligned at the [-m origin
but have angular offsets up to *w,7,/2. The weights of the different images in
this average reflect the weights of the corresponding times in the time-averaging
function. In this particular case, the time-average smearing is therefore equiv-
alent to a distorted azimuthal convolution, with a “convolving” function whose
shape is determined by the time-averaging function and whose width increases
with radius, V%2 + m?2. At the poles, time-average smearing therefore bears an
interesting similarity to bandwidth smearing, which produces a distorted radial
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convolution. The general case is, unfortunately, not as simple. It is also more
easily understood in terms of the loss of amplitude than in terms of the smearing
of the response.

For an object at (I,m) relative to the phase-tracking center, the instanta-
neous phase is ¢ = 2wv(ul + vm), and the phase rate is therefore

do du, dv
i 2y (%l + Em) . (18-30)

Averaging a waveform of frequency f for a time 7 reduces the response by a
factor sinc f7, so for f7 < 1 the loss in amplitude is 1 — (7f7)?/6. Integrating
the visibility data for a time 7, therefore reduces the amplitude by a factor

I ) du dv w2 [du dv 2
Rr = TO' = sinc (%l + E{m) ~1-— F (El + Em) y (18—31)

valid for small 7,, where I is the peak response to the source in the image, and
Iy is the peak response in the absence of time-average smearing. We saw in
Lecture 2 (Eq. 2-30) that, if Lx, Ly, and Lz are the coordinate differences for
two antennas, the baseline components (u,v,w) are given by

U 1 sin H cos H 0 Lx
v | =< | —sindcosH sindsinH cosé Ly |, (18-32)
w A cosdcosH —cosdsinH sind Ly

where H and J are the hour-angle and declination of the phase reference position
and A is the wavelength corresponding to the center frequency of the receiving
system. We can therefore write

du 1 . dH

:i—t' = ’X (LX COSH —_ LY SIHH) E‘ (18"33)
and

dv 1 ) ) ) dH

iy (Lx sinésin H + Ly siné cos H) e (18-34)

Substituting these expressions into Equation 18-31 gives an expression for the
reduction of amplitude of a point source by time-average smearing on any base-
line, as a function of Lx, Ly, H and §, provided the reduction is small. The
reduction is greatest, for a given baseline, when the apparent diurnal rotation of
the sky moves the source at right angles to the fringes associated with that base-
line. The reduction is zero when the apparent motion of the source is parallel
to the fringes.

2.2. Average effect on an image

For imaging purposes, what is more pertinent is the average reduction in am-
plitude over a 12-hour period. To derive this, we note that dH/dt = w, and use
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the following relationships for a given baseline (Lx, Ly, Lz):

2 2
(Z_Q:) = c—:\)% (Lg{ cos? H + L% sin? H — Lx Ly sin 2H) , (18-35)
(d_qt’) - % (L% sin? H + L} cos? H + Lx Ly sin2H) ,(18-36)
and
du dv w?sinéd ,, o 2y
-5 = e2>\2 (L% — Ly)sin2H + 2Lx Ly cos 2H) . (18-37)

Denoting a 12-hour average by ( ), and noting that (sin®? H) = (cos? H) = 1
and (sin2H) = (cos2H) = 0, we have that

du\*\ WL} +1% dv\?\ _ wlsin®§ L3 + 13
dt 2 A2 dt 2 X2

du d
and <d—?:d—:> =0, (18-38)
from which we get
2 2 2
(R;) = Ii ~1- %wgfa? (l2 + m? sin? 5) —)—‘ﬂ (18-39)
0

22

Equation 18-39 applies to a single baseline (Lx,Ly,Lz). For an array,
we can relate the average of the squared lengths of the equatorial projections
of the baseline vectors, Lg( + L‘;',, to the “dirty” half-power beamwidth fyppw
by the expression L% + L% /\? = a/6%pgw. The constant of proportionality
« is determined by the baseline distribution and by any tapering (weighting)
functions applied to the data. For a synthesis image of a source near the North
or South Celestial Pole, the average fractional reduction in amplitude m pro-

duced by time averaging for a source a distance 6 from the phase-tracking center
can therefore be written in the simple form

9 2
Ry~ 1— 25 o272 ( o ) , (18-40)
. 12 furBW

which is valid in the regime of small intensity losses. We now evaluate the
constant « for a few simple cases:

Square coverage, without tapering For square (u,v) coverage of side A (see
Eq. 18-14, the beam is given by Equation 18-15, so Oyppw=1.206/A. For this
case, Lg( + L%, = A2)%/6, ie., a = 1—'2—(().)—G£ = 0.2424. The average intensity loss
factor for a circumpolar point source is therefore

2
(R;)=1-1.05x107° ( 4 ) 72, (18-41)

HPBW

assuming that the loss due to time-average smearing is small.
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Circular coverage, without tapering For circular (u,v) coverage of diameter

D, the beam has Oyppw = 1.410/D. For this case, Lg( + L% = D2)?/8, ie.

a = % = (0.2485. The average intensity loss factor for a circumpolar point

source 18 therefore

2
(R,)=1-1.08 x107° ( erBw) 72, (18-42)

assuming that the loss due to time-average smearing is small.

Circular coverage with Gaussian tapering If the array produces a Gaussian
beam with FWHM 6yppw (Eq. 18-22), the (u,v) distribution must approximate
its transform (Eq. 18-21), so that u2 +v? = v2/n%03ppw and a = ¥%/n? =
4(In2)/m? = 0.2810. The average intensity loss factor for a circumpolar point
source is therefore

2
(R,)=1-122x107° ( 6 ) 72, (18-43)

HPBW

again assuming that the loss due to time-average smearing is small.
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