
Mathematical theory of stellar interiors 

Consider an element of the outer layer of a star. The gravitational 

force on this element due to the attraction of the star as a whole acts 

inwards towards the centre of the star. The star therefore has a permanent 

tendency to collapse under its own gravitation which can only be balanced if 

the inwards-acting gravitational force on each element of the star is 

counter-acted by some other, outwards-acting, force. We know the surface 

temperatures, chemical compositions and pressures of stellar surfaces from 

their optical spectra, and therefore look for a suitable force which can be 

exerted by a gas which is mostly hydrogen. The most likely source of such a 

force is simple gas pressure, obeying P = NkT where P is the pressure, N is 

the number of particles per unit volume, k is Boltzmann's constant and T is 

the temperature. 

If the star is not to collapse, the gravitational pressure due to 

the weight of each layer of the star acting inwards must be compensated by 

an excess of gas pressure on the inside of the layer relative to the outside. 

For the whole star to be maintained in equilibrium, neither expanding nor 

contracting, the gas pressure must increase inwards through the star at 

exactly the rate required to balance the weight of the concentric layers of 

the star. 

Let M(r) be the mass within a radius r of the centre of the star. 

The inwards gravitational force on a mass m at distance r from the centre 

is 
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Consider a spherical shell of stellar material, of radius r and 

thickness Dr. Its mass will be m = 1 irr2~r.p(r) where p(r) is the density at 

radius r. The inwards gravitational pressure due to gravitational 

attraction on this shell will be the force per unit area of the shell, i.e. 
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If the star is neither expanding nor contracting, AP 
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must = 0 across the shell. Dropping the subscript 'gas' on the gas 

pressure, as it is the only pressure that will appear later, we have the 

first equation of stellar structure, the equation of mechanical equilibrium, 
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Now M(r) and p(r) are not independent. Remember that M(r) stands 

for the mass inside radius r while p(r) is the density at radius r. Consider 

again the spherical shell of thickness Ar and radius r. The mass inside is 

M(r). M(r+pr) is the mass inside plus the mass AM of the shell. This AM is 

none other than the mass m we used above, so we must have 

— = 4TF r2 p(r) 12] 
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We may re-write the equation for the gas pressure as 

= NkT = 
umH 

kpT 

where p is the mass density, u is the mean molecular weight of the stellar 

gas, and mH is the mass of a hydrogen atom. Hydrogen molecules will have 

p = 2, hydrogen atoms p = 1, and a gas of protons and electrons (fully 

ionized hydrogen), u = Z. We now have three equations in four unknowns, 

M(r), p(r) and the pressure P and temperature T (both functions of r). 

This set is therefore insufficient (we must have as many equations as 

unknowns if we are to be able to find a unique solution for the interior 

parameters of the star), and to proceed we have to involve some more 

physics. We have implied that the gas pressure P must decrease outwards 

from the centre of the star. The third equation tells us that this implies 

that the temperature T must increase outwards from the centre. This in 

turn implies that heat must be flowing outwards from the centre of the star. 

(Note that we here have the important result that a star must be luminous 

to avoid gravitational collapse.) The equations for heat flow will help to 

define the system further. 



Heat flow can generally take place by any of three processes, namely 

conduction, convection and radiation. Conduction is unimportant in gases, 

even at the extremes of physical conditions encountered in stars - it will 

be neglected here. Convection is heat transfer by bulk circulatory motion 

of the matter in a region, such as the flow of warm air from the furnace to 

individual rooms in a centrally heated house. Convection occurs if large 

temperature gradients exist in the star. Consider a small volume of 

stellar material, initially in equilibrium inside a star. Imagine it to be 

displaced ouwards by a 

where the gas pressure 

P = const.p1 , where y 

small distance, so that it rises into a cooler region 

is less. It will expand adiabatically, satisfying 

is the constant ratio of the specific heats of the 

stellar material at constant pressure and at constant volume. It thus 

reduces its pressure and temperature by this expansion. If its pressure and 

temperature are reduced below that of the surrounding gas by this process, 

it will be forced back to its original position, which is therefore one of 

stable equilibrium. But if the surrounding temperature gradient in the 

stellar gas is great enough, the small volume of material may be hotter than 

its surroundings even after adiabatic expansion, and it will keep on 

rising. This is the unstable situation which will lead to the formation of 

convection currents in the star. Mathematically 
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If convection does not occur, heat flow will be by radiation. In 

practice we can usually assume the latter and inspect our solution for the 

variation of T and P within the star to see if the conditions for no 

convection are indeed satisfied. Anywhere they are not, we must substitute 

convection and the adiabatic equation for what follows. To deal with the 

equation for heat flow by radiation, we first introduce the quantity L(r) 

to describe the total flow of radiation per unit time across the lower 

surface of the shell of radius r. L will be measured in ergs/second, and 

clearly L(R*) must = L*, the observed stellar luminosity. The flow of 

radiant energy is impeded by its own inertia and by the opacity of the 

stellar material. The momentum of an energy E in the form of radiation is 

equal to its effective mass times its velocity c, or 
E 
. The radiation 
c

momentum crossing unit area of the star at radius r per unit time is thus 

L(r)/1+~rr2c. If K is the opacity of the stellar material per unit mass 



then the optical depth of the shell is KpAr. Radiation theory tells us 

that the momentum of radiation crossing unit area per unit time, multiplied 

by the optical depth through a region, is equal to the change in the 

radiation pressure 
APrad 

across that region. Now Prad 3 6TH where o 

is Stefan's constant, so that 

AP
rad 3 

aT3 AT 

relates the change in radiation pressure across the shell to the change in 

temperature across it. We therefore have that 

i.e. 
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where the density has been written as a variable with r to remind us that 

it will be different in different spherical shells. This equation tells us 

how the temperature change as we move outwards through the star is related 

to the luminosity L(r) at the appropriate level in the star and to the 

opacity in that level. The minus sign reminds us that temperature will 

decrease with r if the energy flow L(r) is positive outwards. For the 

moment the introduction of this equation does not save us, as we now have 

four equations in five unknowns, namely P, M, T, p and L, all as functions 

of r. We have also introduced the difficult problem of calculating K 

for hydrogen-helium gas as a function of these, as well as that of calculating 

}i for different physical states of the gas. We can however define the system 

by looking at one more equation involving L. The luminosity must be 

generated by an energy supply somewhere, and further, L cannot increase 

across a spherical shell unless energy generation is going on within that 

shell. We denote by E the rate of energy release per unit mass of hydrogen 

(E is also calculable in principle, from the theories of thermonuclear energy 

release). Then if AL is the increase in L going from radius r to radius 

r+ Ar, 

AL = 1+r r2 Ar E p(r)  E5]1

This final equation gives us five equations for five unknowns, 

provided we know physics enough to be able to assign numbers to u, K and 

E at different levels in the star. The set of equations can be 'solved' 
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by starting with known values of P, T, M and L at the surface of the star 

(r = R*) and working inwards across successive layers Ar thick, calculating 

u, K and e each time for each new layer, and testing OT/Or for radiative 

or convective heat transfer each time. This is all done on fast digital 

computers in fact, and the resulting solutions for all the parameters of 

the star as functions of r define different investigators' stellar 'models'. 

We can show how the mass-luminosity relation arises from these equations 

without getting involved in detailed computations however. 

Suppose we label the central pressure and temperature of the star 

by P° and T°. We can make the rough approximations 
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at some intermediate value of r, given that P° and T° will be very much 

greater than the corresponding values at the surface of the star, so that 

P° 
surf 

' Po (where 
Psurf 

- P 
 
is the surface pressure) for example. If we 

consider conditions within a variety of different stars, the value of r at 

which these relationships are approximately correct will be a given fraction 

of the total radius of the star, R*, in each case, so that we can put 

r a R* each time it appears in the equations. 

Thus in equation [1], we must have 

P° M* 
x 
P(r) 

R* a R*2 T(r) 

But from equations [2] and [3] together we also have 

M* 2 P(r)

R* 
R* x 

T(r) 

In both of these relations we have used the fact that M(r) « M* if r a R*. 

P(r) and T(r) stand for the pressure and temperature at the given radius 

r. This pair of equations enables us to eliminate their ratio P(r)/T(r), 

and thus to discover the relationship 

Po a 

M*2 

R*~ 

i.e. that the central pressure within a star will depend on the square of 

its mass and inversely on the fourth power of its radius. We can now use 

equation [3] to find the similar relationship for the central temperature 

T°, because at the centre of the star equation [3] must hold with P = P° 
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and T = T°. The density which appears will be p°, the central density. 

The assumptions we have already made about M(r) M* and r R* imply that 

p° « p, the mean density, and we know that 

P = 3 R*3 

so that po M~ 

R* 
3 

Substituting this into equation 

F° , we find that 

T°
M 

a 
R~ 

[3] along with our relation for the pressure 

To derive the mass-luminosity relationship, we now substitute all 

of these into equation [4], so that we have 

T° ~ * 3 
also 
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The first proportionality comes from inspection on the left-hand side of 

equation [4], the second from the right-hand side. To be sure of this, 

try writing it out for yourself ! From inspection of these two proportionalities 

we can see how L* must itself depend on the other quantities. The dependences 

on P° and T° have been eliminated by our method of analysis, and the 

dependence on R* cancels out right at the end. We are left with 

L a M* 3

which is not a bad approximation to the mass-luminosity law considering the 

crudity of the approach ! We have not even used the properties of hydrogen 

to find this (although we have assumed that stars of similar chemical 

composition will have interior structures such .that r « R* - i.e. we have 

assumed that stars of different masses but the same chemical composition 

will be 'scaled replicas' of each other). What we have discovered is 

essentially this : our notions of the physics of the interior of a star, 

as expressed by the equations we have derived, are capable of producing 

the result that a star's luminosity should, under plausible assumptions, 

depend on its mass only, and as the third power of that mass. This is a 

very satisfactory first test of the plausibility of our theory. The rest 

is very complex astrophysics - which has been done fully and properly with 

the aid of large modern computers. 


