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TRANSFORMATION OF CO-ORDINATES IN SPECIAL RELATIVITY

Summary A rigorous derivation of the Lorentz transformation equations of special
relativity is given, using a matrix notation to take full advantage of the
assunption of Huclidean geometry and the consequent linearity of the
transformation.

An inertial frame is a reference frame in which spatial relations, as would
be determined by a system of rigid rods at rest in the frame, are Buclidean, and in whioch
a test particle, once found to be at rest, would remain so for all time. In such a frame
the motion of a free particle would be uniforsm and linear.

Einstein's Principle of (Special) Relativity asserts that a frame in uniform
translatory motion relative to an inertial frame cannot be distinguished from that
inertial frame by any physical experiment whatsewer. It follows from this that such a
frame is itself inertial, and that any two inertial frames wiich are not trivially
coincident must be in uniform translatory motion. The principle implies that all inertial
frames are equivalent for the formulation of physical laws, and that in particular the
law of lightepropagation must be the same for all observers in inertial frames. The work
of de Sitter on double star sysitems has shown that the veloeity of light is independent
of the velocity of the source, and on the hypothesis of isotropy of an inertial frame, it
would be independent of direction.

‘ The stress laid by these ideas on the importunce of inertial frames is strong
criticism of tae special tneory, especially as inertial frames can only be regarded as an
extrapolation of limited experience. All practicel frames of reference contain gravitatinﬁ
matter by their very nature, and thae uniforu linear wotion of test particles cannot be
expected to be observed. The Buclidean geometry is also an idealisation of our local
observations; these difficulties, together with the unigue importance of inertial frames,
are removed by the General Relativity theory.

With taese definitions and postulates, however, a system of transformations
between frames can be set up which provides a satisfactory account of many relationships
observed in practice. The extent to which a reference freme can be regarded as inertial
depends on the particular application in view, and must ultimately be decided by
experiment .

The postulated agreement of =211 observers on the law of light-propagation is
the starting-point for the derivation of these transformations, whieh will now be
undertaken.

Consider an event P in space and vime at which a light signal is emitted. An
event @, at which the light signal is absorbed is considered to take place at a nearby
point in space and at a neighbouring instant in time. In an inertial frame S, let the
event P be assigned co-ordinates (x,y,%,%) and the event Q co-ordiinates (xedx,y+dy,z+dsz,
t+dt). Similarly, in enother inertisl frame S', let P be (x',y',2',t') and Q (x'+dx',
y'+dyt,2tedz? ,t'+dt" ) . From the law of light-propagation and the Euclidean geometry
assumed we may put
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dxa + dy2 + dz” = ¢ dt and dx'2 + dy'z + dz'" = ¢"dt’

The zssumed agreement between inertial observers as regarde the value of ¢
Justifies the use of the same symbol in the two frames.

Now these relations may be written in the form

dx® ¢ dy° ¢ d2° « O°4t° w 0, dx'® « ay*® < ax'? . ofas'? 4 0,

It is known from algebra that any two polynomizls savisfying the condition
that they share all taeir zeros, if they are of the same degree, can only differ by a
constant factor at most. It follows that, for any event Q in the neighbourhood of P, the
following relation is true 3
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ix® + dyz + dz® - czdta = K(dx'2 + dy'z + dz'" - ¢ dt'z), K being a constant.

Now, because we nave taken Euclidesn geometry, the space-interval (distance) between P an
Q is independent of the position in space of P or Q relative to the origin (i.e. the
term (dx2 + dy2 + dz2) is independent of (x,y,2) for given P and Q, and similarly for the
primed system, and similarly beeause of the assumptions regarding time-dependence, the
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time-intervals dt, dt' are independent of %,%t'. Therefore, there is no loss of generality
in taking P to be the event (0,0,0,0) in both S and S'. The relationship of S and S' is
therefore seen to be completely symmetric, both with respect to P and with respect to
each other. It is therefore equally valid to write

K(dx? + ay® + ag® = o®at?) = ax'? 4 ay'? & a2'? - oaye?

It follows thereiore that K must equal ¥1. Now in the linit of S and S' becoming
coincident for all time (vanishing relative veloecity) dx must tend to + dx*', etc., so
that only K = +1 is acceptable. It follows that transformaetions of infinitesimally small
intervals between 8 and 5' must setisfy

. & 2 2..2 2

ix® & ay® ¢ an® « o%at® o ax*? 2

+ dy'a + 42'° - Pape? (1)

The form of this relation between differenticls implies that the law of
transformation betwcen S and 8' for general events (i.e. not necessarily infinitesimally
close events) is linear. The linearity of the transformation also means that the
"standard configuration” of two inertisl frames comuonly used ia Special Relativity {(viz.
one frame in uwniforam motion along & prescribed space-axis in the otner) is a justifiable
simplification, ian that the spatial co~ordinate systems in any two inertisl frames can
be oriented to saitisfy this condition at all times, whatever the original direction of
toeir relative uniform translatory motion. It is therelore sifficient to derive a
transiormation law by comnsideriung vine particular case of "standard configuration®. Thus
the deduction of linearity of the Jransiormsiion equations very gre=tly simplifies the
problem .

(The general result, proved in any book on tensor calculms, is that a
transformation which takes a metrie

%ﬁxldx“
with censtant coefficients into sanother metric
4 L ]
iz o

sx' p,.

also with constant coefficients, must be a linear transformation. The present example is
clearly the particular case of this theorem with 8, = 8y = g33 = l, g44(say) = «e?)

Under a linear transformation, the finite co-ordinate differsnces satisfy the
same transformation law as the differentials, so we shall have

12 + ya + aa - 0212 = x'2 - y'2 + z'z

- o2atr2 (2)
With the linearity of the transformation in mind, the use of 2 vector
representation of events with a matrix transformation law is suggested. In the formalism
4o be used henceiorth, events will be represenied by vectors in & mathematical 4-space
(2 sppce of four diuensions), such that the event (z,y,2,%t) is for esample represented by
the vector whose components are ict, x, y, and z. The convenience of this particular
representation will become apparfent shortly. In the mabrix notation, the vector will be
written as ithe coluun:

y similarly for X'

The tpansformation law between two inertial frames S and 5' moving in
standard configuration will take the form X' = (L)X , where (L) is a 4 x 4 matrix.
Denoting tae transpose of a matrix as X, (fb, etc., the equations of the transformation
may be writtea
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X' = (L)X, X' =X(T), and X*'X* = XX (from equation (2))
Substituting for X' and X' in the last of these from the first two,

X(T)(L)X = XX , so that @)(L) = 1

It is therefore necessary that (L) be an orthogonal 4 x 4 matrix in order
that (2) shell be trve.

As we are dealing with motion in tae standard coanfiguration, y,z = O imply
¥'y2' = 0 for all tise. It follows that y* = Ay, 2" = Bz for all time, where A and B are
constants. From the symmetry vetween inertial frames discussed above, we may deduce that
A and B can only take the values F1 as before, and similarly consideration of the limit
as S tends to S' forces the chcice of +1. The matrim (L) must therefore take the forms

L by,
2l "2
0 0

0
0
3
0 (¢] o

= O © O

Now the only possible orthogonal 4 x 4 matrix of this form must have Lll
le = sinA, L21 = « gin)\, where A is come angle.
In that case, x' = ict(- sind) + x(cos))

x' = O must imply x = vb, vhere v is the relative velocity of 3' and 3, from
the definition of the standard configupation, %o we must have

tanh = v/ie
Therefore cosh = B, sin = « ivf/e, where § = (1 =
The transformatior mairix for the special theory of relativity is thereiore

= ook = L)),

° /02)-%

(L) = B ~ivf/ec 0 0
ivf/e £ 0 ©

\ 0 0 3 -8B I

\ © 0 e

It may readily be verified that the matrix equation X' = (L)X now contains the two more
common equations x' = f(x = vt) and ' = B(t - vz/e2).

Discussion.

The cssumpition of fuclidean geometry ensures wie complete syumetry between
two inertial frames S and S'. This symmetry is reflected in the fact that the inverse of
the final metrix obtained is the same matrix with -v written for v.

It also ensures that the transformation is & linear prausiormastion, thereby
permitting the matrix representation which has been used. In the mathematical 4-space in
which an event is represented by a vector X, the transformetion is seen to be a rotation
of the vector in the (complex) x=t plune tarough 2 (complex) engle A = are tan v/ic.

It is not usually stressed sufiiciently that it is the linearity of the
transformation which permits the use of "stendard configuration™, =o that nothing essential
to the taeory is lost by making the greatly simplifying step of taking S and S* %o be in
this configuration. Because of this linearity, straight lines in S must become stradght
lines in S', where they may be moving. By adjusting their direction however, we can always
find a set of lines muiually parallel and fixed in S which transform into a similar set in
S'. This makes possible the choice of the common x-axis. Further, fixed planes containing
the x-axis in S become similar planes in 3', and by symmetry two such planes at right
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angles in S become planes at right angles in S'. This makes possible the choice of
common co-ordinate planes.

Because the transformation equations may be written in terms of an orthogonal
matrix specifying a rotation (in the mathematicel 4e-space, it must be emphasised), it
follows that the transformations have a group property. In particular, the product of
any two transiormations will also be a transiormation of the same form. Thus, if S' moves
in standard configuration at velocity v relative to S, the matrix of transformation
between S and S' is L(v). Similarly, if S" moves et u relative to S', the matrix is L{u).
Then the transformetion between S and S"™ is, by the group property, given by L{v) x L(u),
and will be of the form L{w), where w is the "combined velocity” of v and u. Carrying
out the matrix multiplication of L{v) and L(u) shows that

w s g ¢ ¥

1+ =
o2

The law of couwbination of velocities therefore follows direcily from the
group property.

The value of the matrix formulation of Special Relativity cannot be over-
stressed. 1t provides the simplest structure for dealing with events in a 4-dimensional
space-time, and suffices for alwost all important applicaiions of the theory. In
subsequent articles, tae matrix method will be applied to relativistic mechanics and to
relativistic electrodynamics in oxder t¢ bring out this point more clearly.

Trinity College,
Cambridge

August 1962



