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TRANSr?OR ATION OF C0-0kWINATE' IN SPICIAL RA,ATIVITY 

Summary A rigorous derivation of tie Lorentz transformation equations of special 
rela=tivity is liven, using a matrix notation to take full advantage of the 
assumption of uclidean geometry and tue consequent linearity of tue 

transformation . 

An inertial frame is a reference frame in which spatial relations, as would 
be determined {b„ a sjs yen of rigid rods at rest in he frame, are 1 clidean, and in which 
a test particle, once found to be at rest, would remain so for all time. In such a frame 
the motion of a free particle would be uniform acid linear. 

Ninsteiri'a Principle of (Special) Relativity asserts that a frame in uniform 
translatory motion relative to an inertial frame cannot be distinguished from that 
inertial frame by d4Y physical experiment wnatsc ier. It ollows from this that such a 
frame is itself inertial, and that any i;wo inei:t:ial frames W1 Ch are not trivially 
coinciaent must be in uniform translatory motion. The principle implies that all inertial 
frames are equivalent for the formulation of physical laws, and that in pa titular the 
law of light-propagation must be the same for all observers in inertial frames. The work 
of de sitter on double star systems nas sown that the velocity of light is independent 
of the velocity of the source, and on the hypothesis of isotropy of an inertial frarue, it 
would be independent of direction. 

The stress laid by these ideas on the importance of inertial frames is strong 
criticism of tie special tueory, eap~ei ally as inertial francs can only be regarded as an 
extrapolation of limited experience. Al]. practical frames of reference contain gravitatinct 
matter by their very nature, and the uniforc<< linear :otion of test particles cannot be 
expected to be observed. Tue luclidean geometry is also an idealisation of our local 
observations; those difficulties, to,ether with the unique irnportnee of inertial frames, 
are removed by the General Relativity theory. 

ooith these definitions and postulates, however, a system of transformations 
between frames can be set up which provides a satisfactory account of many relationships 
observed in practice. The extent t which a reference frame can be regarded as inertial 
depends on the particular application in view, and must ultimately be decided by 
experiment. 

The postulated agr, eoment of all observers on to law of light-propa,atiori is 
the s t-_.rting-point for tree derivation of these transformations, which will now be 
undertaken. 

Consider an event P in space and time at vhich a light signal is emitted. An 
event , ..t which the ligtt signal is absorbed is considered to take place at a nearby 
point in space and at a neighbouring instant in time. In an inertial frame S, let the 
event P be assigned co-ordinates (x,y,z,t) and the event a co-orhnates (x+dx,y+dy,z+dz, 
t+dt) . Siruil :rly, in anotuer inertial frame S', let P be ( x' ,y' , z' , t' ) and Q. (x'+dx' , 
y'+dy',z'+dz',t'+dt'). From the la of light-propagation and the Euclidean geometry 
assumed we may put 

dx2 + dy2 + dz2 = c2dt2 and dx'2 + dy,2 + az'2 = o2dt'2

The assumed agreemei:t between inertial observers as retards the value of o 
justifies the use of tree same symbol in tale two frames. 

Now these relations uny be written in the form 

dx2 +
2 + dz2 - c2dt2 = 0, dx'2 - dy'2 - dz'2 - c2dt'2 = 0. 

It is knov+n from algebra tat away two polynomials satisfying tue condition 
that they share all heir zeros, if they are of the same degree, can only differ by a 
constant factor at most. It follows that, for arm event 1 in tie neigubournood of P, the 
following relation is true s 

d 2 + dy
2 
+ dz2 - c2at2 = E(ctx 

2 + dy'2 + di '
2 
- c2dt'

2
), K being a constant. 

Now, because we ave taken 'uclidean geometry, tue s ce-interval (distance) between P an 
Q, is independent of tuie position in space of P or Q, relative to the origin (i.e. the 
term (dx2 + dy2 + dz2) is independent of (x,y,z) for given P and (, and similarly for the 
primed system, and, similarly because of the assumptions reg:..rding time-dependence, the 
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time-intervals 
in taking P to 
therei'oi a seen 
each obis.):. It 

dt, dt' axe independent of t,t'. Therefore, there is no foss of generality 
be the event (0,0,0,0) in both S and 5'. The relationsiip of S and S' is 
to be completely sy. metric, both with raped to P yid it_1 re >p ect to 
is lierefore equaily- valid i;o write 

K(dx + d,12 + dz2 - ogdt`'v) = dx'2 + dy'2 + dz'2

It follow therefore that K must equal ;1. ow in the limit of S and S' becominv 
coincident for all time (vanisittng relative velocity) dx must tend to + dx', etc., so 
that only K = +1 is acceptable. It follows that transformations of infini tesiraally small 
intervals between a and S' must satisfy 

r 

~Lx + dy + dz - c2dt = dx,2 + dy'2 + dz'2 - c2dt'2 (1) 

The fora of tnis relation between differenti is implies that he law of 
transformation between S and S' for general events (i.e. not necessarily infinitesimally 
close events) is linear. The linearity of the tresforaation also means that tae 
"standard configuration" of two inetiaL frames col only used in ;special Relativity (viz. 
one frame in uniform notion o3.ong a prescribed space-axis in tie other) is a justitia ble 
simplification, in that he spatial co-ordinate systems in any two inertial frames can 
be oriented o satisfy taiS eonaition at all times, whatever the original direction of 
heir relative uniform tranalatory motion. It is t.ierefore sufficient to derive a 
transformation law by eonsidexing to particular case of "standard configuration". Thus 
the deduction of linearity of the Transformation equations very gre:tly s_ piifies the 
problem. 

(The general result, proved in any book on tensor calculus, is that a 
transformation wnich takes a metric 

g cAx1ctxµ

4th constant coefficients into r other metric 

A' µ' 
dx 

also with constant coefficients, :rust be a linear transformation. The present example is 
clearly toe particular case of this theorem with g11 g22 

= 
g 3 

= 
1, = -G2) 

Under a linear transformation, :e finite co-ordin: to differences satisfy the 
same transformation law as tee bifforentials, so we shall have 

x2 + y2 + z2 c2t` = r.'` + y'2 + z'2 - c2tt'
2 

(2) 

With the linearity or the transformation in mind, the use of a vector 
representation of events with a matrix transformation 

la`s 
is suggested. In user formalism 

to be used L.Lenoelorn, events wi.11 oe representeu by vectors in a mathematical 4-space 
(a sppce of four di.:+ensiona), such that the event (x,y,z,t) is for e. pie represented by 
tine vector whose components are ict, x, y, and z. The convenience of this particular 
representation will become appar4ent shortly. In the ::atria notation, tine vector will be 
written as the column: 

X= 
y 

b z I 

The transformation law. between two inertial frames S and 
standard configuration will take tie form X' = (L)X , nere (L) is a 
Denoting the transpose of a matrix as X, (L), etc., the equations of 

may be written : 

sia.larly for X' 

a' moving in 

4 x 4 matrix. 
the transformation 
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x' = (L)X, X' = x(t), and x'X' = XX (from equation (2)) 

Substituting for X' and X' in the last of tnese f.iom the first two, 

= XX , so that )(L) = 1 

It is therefore necessary th at (ii) be an orthogonal 4 4 matrix in order 

that (2) shcll be true. 
As we are dealing with motion in tae standaru. oonfi~uration, y, z 0 imply 

= 0 for all tia~ie. It follows that y' = Ay, z' = Bz for: all time, where A anti B are 
constants. I?rom tie sy.anetry Lety een iriertir l frames cLL Jcussed above, we slay deduce that 
A and B can only take the values +l as before, and similarly consideration of the limit 

as S tends to S' forces the choice of +1. The matria (L) must therefore take tie form: 

f r'li 
L12 4

(L) = 
£"1 L22 

O 0 

0 0 1 0 
i 

() 0 U 1/ 

= eosh = 
Now t1ie only possible orthogonal 4 x 4 matrix of this form must have L 

229 £1~ 
, = sink, L 

2  
1 = - sinX, where X i..; some angle. 

In that case, x' = ict(- sinX) + x( osX) 

x' = O muse triply x = vi, v::cre v is the relative velocity of S' and S, from 
the definitio1 of tie standard i;o we must have 

tan] == vlic 

Therefore coeX = ~, sinA == - ivy  /c, where = (1 - v /e2)"?

The transformation matrix for i.ue special eory of relativity is therefore 

(L) = -ivWc 

iv /o }- 

` 4 G 0 

0 0 

0 
0 

1 

0 1 

0 

0 

It may readily be verified teat the matrix equation X' = (L)X now contains the two more 

common equations x' = (1(x - vt) and t' = (t - vic 2). 

Discussion.

The acsunption of &acliaean eometry ensures tin complete syimetry between 
two inertial frames S and S' . This symmetry is reflected in the fact that the inverse of 
the final matrix obtained is the same matrix with -v written for v. 

It also ensures that the transformation is a linear rauaformaation, taereby 
permitting tee matrix representation wnicri ias been u _ ed.. in the maz ematical 4-space in 
which an event is represented by a vector X, the transformation is seen to be a rotation 
of the vector in trio (complex) x-t pl ne tarough a (complex) angle X = arc tan v/ie. 

It is not usually stressed sufficiently that it is the linearity of the 
transformation weica permits the use of "sta.rndard configtration", so that nothing essential 
to the tueory is lost by gaping the greatly simplifying step of taking S and S' to, be in 
this configuration. Because of this lineariby, straig it lines in S must become strl,Aget 
lines in S', 4:zrere they may be moving. By adjusting their direction however, we can always 
find a set of lines mu'i,ually parallel and fixed in S wnien transform into a similar set in 
5'. ̀i'his makes possible the csoice of tee common x-axis. Further, fixed planes containing 
tee x-axis in S become similar planes in 3', and by symmetry two such planes at rigs t 
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angles in S become planes at right angles in S'. This makes possible the choice of 
common co-oruin:to planes. 

Lecause -cue transformation equations may be written in terms of an orthogonal 
matrix spec:i jimg a rctation ( in the ma tnexatical 4-space, it must be emp lasised), it 
follows that the transformations have a group property. In particular, the product of 
any two transformations sill also oc a tr- sioLmation of he sams fciin. Thus, if S' moves 
in standard configuratton at velocity v relative to S; the matrix of transrormation 
between S and S' is L(v) . Similarly, if S" moves at u relative to at , the matrix is L(u) . 
`Jnen the transformation between. S and S" is, by he group pro nty3 given by L(v) x
and will be of the form L(w), w sere w is by "combined velocity" of v and u. Carrying 
out the matrix multiDlication of i(v) and L(u) ahows that 

w _ U + V 

l + 
uv 

The law of combination of velocities therefore follows directly from the 
group property. 

The value of the matrix formulation of Special elativity cannot be over-
stressed. It provides the simplest structure for dealing with events in a 4-dimensional 
space-time, and suffices for almost all important applications of the theory. In 
szhse.,uent articles, ic matrix mettiod iils be applied to relativistio mechanics ama. to 
relativistic eleotrodynaiios in order to bran out tuis point more clearly. 
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