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CHAPTER FOUR: The Primordial Fireball 

• 

4.1 The energy density of radiation in an expanding world-model 

The observations of HO , qO and ~® discussed so far do not yet tell 
us whether there is a non-zero cosmological constant, or give the value of qO

to within -0.5. We must therefore seek other evidenoe for whether or not 
there was a 'Big Bang' with R(t)=0 in the past of our Universe. The strongest 

evidence for such a Big Bang canes from the microwave black-body background 
radiation, referred to earlier in Sec.l.l.4. To understand the irrportance of 
this background, consider first the behaviour of radiation in an expanding 

wor id-model.. 
If the Universe is filled with photons of energy density ur joules/m3

we can define an associated radiation density )r  throrxjh 

ur = ~ra2 

This energy density is associated with a radiation pressure pr such that 

Pr = ur/3 

so that if the photon flux is adiabatically expanded we can write 

d(urV) _ -prdV = -(1/3) urdV 

taraV + Vdur -(1/3)urdV 

--(4/3) (dV/V) = dur /u r , from which 

(4.1) Qr (t) ur (t) R 4(t) 

In a Universe where both mass and photons are conserved the radiation 

density ~r therefore falls off faster with t than does the matter density 

pm, which varies as P 3(t) by equation (1.4) . The early phases of any 

expanding model with a singularity R(t) = 0 must therefore be 

radiation-daninated, in the sense $'r»sm, unless the Universal photon flux 

in that model is strictly zero. This is a property of 'Big-Bang' models with 

radiation that has been known since the early work of Gamow and Lemaitre. 

Furthermore, any such model must spend same time with pm sufficiently large 

that the opacity of the model will bring matter and radiation towards thermal 

equilibrium; if the time spent in this opaque state is sufficiently long, the 

• 
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radiation will acquire a black-body spectrum and both it and 
the matter will be 

characterisable by a temperature T(t) where the number of photons dN(t) 
in 

volume V(t) with frequencies between N and V+dhV is given by 

dN(t) = 8ii ' 2V(t)dJ/c3 exp(hV/kT(t))- l 

• 

• 

and the energy density 

ur (t) = fhdN(t)  = 8n5 k4T4 (t)/15c3h3 = aT4(t) 

v=o 
The constant a is known as the radiation density constant (= 4 T/c where (7 is 

Stefan's radiation constant) . 

Models which achieve thermal equilibrium between matter and radiation at 

an early stage are known as 'hot' Big -Bang, or 'fireball', models. Evidently 

as Ur (t) - R 4 (t)  the temperature of these models varies as 

T(t) - R-1(t), i.e. 

(4.2) T(z) = T0 (l+z) 

Note that this is the same as the relation for the observed bolometric 

brightness temperature of a distant black-body source, derived in Sec. 2.4.1. 

Gamoca and his coworkers Alpher and Herman, while considering the problem 
of element synthesis by nuclear fusion in the 'hot Big Pang', realised that a 
radiative remnant of the dense past might still be observable as an isotropic 
black--body background with some low temperature T0. From a number of 
assunp tions about the mechanisms of element production and the conditions early 
in the expansion (i.e. at high z), they attempted to explain the origin of the 
elements and predicted a presently-observable black-body temperature Tp of 
5-28 K (A1Fher and Herman, Phys. Rev., 73, 1089-(1949) and Rev. Mod. Phys., 
22, 153 (1950), Phys. Rev., 84, 60 (1951)). A black-body spectrum at 
such a laa temperature would peak in the far-infrared, and have most of its 
energy in the microwave region of the spectrum. There were no serious attempts 
to detect such a background in the 1950s - it would have been below the levels 
of sensitivity ci microwave and infrared detectors that were then available. 
The popularity at that time of the Steady-State Theory (resulting at least in 
part fran the early over-estimation of the Hubble parameter) may also have 
discouraged work towards detecting such a black-body background. 

4.2 The discovery of the 2.7-K radiation 

The first deliberate attempt to detect a black-body background at 
microwave frequencies was that of Roll and Wilkinson at Princeton, encouraged 
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by the theorist bert Dicke. While their apparatus was under construction in 

1965 they learned that Penzias and Wilson, at the Bell telephone Laboratories 

in Holmdel, New Jersey, had already detected an apparently isotropic 'excess' 

background temperature of (3.5 + 1) K during observations of the nonthermal 

galactic (Milky--Way) background at 4080 MHz (~7.4am) with a 20-ft horn antenna 
originally built for satellite cornmunicatiens. The experimental results from 
the Holmdel antenna were then published by Penzias and Wilson in Ap.J., 

142, 419 (1965) together with an interpretation of the excess radiation as 

the red-shifted 'primordial fireball' by Dicke, Peebles, Roll and Wilkinson in 

Ap.J., 142, 414 (1965). Roll and Wilkinson subsequently carried out their 

can measurements at )3 .2cm (Phys. Rev. Letters, 16, 405 (1966) ; Ann. Phys. , 
44, 289 (1967)) and obtained an 'excess' brightness temperature of (3.0 
+ 0.5) K. The history of these experiments, and a description of the radio 

measurement techniques that they used, is given by Wilson in his 1978 Nobel 

Prize Lecture (Science, 205, 866 (1979)). 

4.2.1 Properties of the 2.7 K radiation 

The 'excess' temperature is the brightness temperature measured by a 

radiometer after all known discrete sources of radiation have been accounted 

for; the raw data must be corrected for radiation from the Earth, the 
atmosphere, the Milky Way, and discrete sources such as bright radio galaxies 
and quasars, the Sun, etc. The effects of losses in the receiving antenna must 

also be allcaed for; an imperfection in the antenna can simulate a 'grey-body' 
radio source which has a fraction of the black-fly emissivity at the 
temperature of the antenna. After allcaance was made for all such factors, it 

was clear by 1972 (see Thaddeus, Ann.Rev.Astron.Astroptiys., 10, 305) that 
there remained an isotropic, unpolarised invariable 'excess' of micraaave 

radiation, whose brightness temperature averaged (2.72 + 0.08) K ever the 
wavelengths from )73.5cm to \3.3mm. The constancy of the excess brightness 
temperature with observing wavelength was consistent with, but did not 

prove, that the microwave excess radiation had a black-body spectrum. 
A genuine black-body spectrum at 2.7 K should peak at a wavelength of 1.9 

mm; an observation that the 'excess' radiation indeed falls off in intensity at 
wavelengths <1.9 mom is therefore crucial to establishing its black-body 
character. Unfortunately the atmosphere is opaque to most infrared wavelengths 
short of 'A3mm, so attempts to verify the short-wavelength peak have to be made 
from detectors taken above the Earth's atmosphere. The most convincing 
evidence for the black-body form of the spectrum canes from measurements with a 
balloon-borne spectrophotometer in the range ?'4--0.4neu by Woody and Richards 
(Phys. Rev. Letter, 42, 925 (1979) ) . This experiment confirmed the 
existence of the expected spectral peak, but at the same time showed 
significant departures from the theoretical Planckian spectrum, at a level of 
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about 10-20% of the observed intensity. The total intensity in the background, 
integrated over the wavelength range of the experiment, also corresponded to a 
black-body temperature of (2.96 + 0.05) K, rather than the (2.72 4-

0.08)  K deduced from the radio data. The reason for these small but 

significant discrepancies remains unclear. 

A small anisotropy has been found in the radiation by Cheng et al. 
(Ap.J., 232, L139 (1979)), who used balloon--borne microwave radiometers at 
19.0, 24.8 and 31.4 GHz to measure the background at an altitude of 27 km, 
minimising corrections for atmospheric radiation. The anisotropic component of 
the radiation is well fitted by a dipole distribution of intensity with 
amplitude (2.99 + 0.34) mK and direction R.A. = (12 h3 + 0h4) , Decl. 
= (-1 ° + 6°). This dipolar anisotropy can be interpreted as due to the 
Dc pler Effect resulting from a motion of our Galaxy relative to the background 
radiation of 540 km.s~1; if this interpretation is correct, then the 
anisotropy is due to a local peculiar motion of no cosmological significance. 
The same experiment placed a limit of 2 mK on nonpolar anisotropies. It is 
also known (Nanos, Ap.J., 232, 341 (1979)) that any linearly-polarized 
component of the background is < 1.6 mK in intensity. 

There is good evidence that the 2.7 K radiation exists elsewhere than in 
the Solar System, an important test if it is to be interpreted as a genuinely 
Universal background. Surprisingly, some of the evidence was available even 

before Alpher and Herman made their predictions, but its significance was not 

realised. It had been known since 1940 that interstellar absorption lines due 
to the diatonic molecule CN were not confined to transitions invo~vm the 
lowest rotational level in the electronic ground stag. Adams (Ap.J., 3,
11 (1941)) had noted that both the transition of ON at 3874.608 A (which 
occurs from the J=0 rotational level in the electronic ground state) and the 

transition at 3873.998 A (which occurs from the J =1 rotational level in this 
state) were seen in the visible absorption spectrum of the star f Gphiuchi. 

McKellar (Publ. Dominion Obs. Canada, 7, 251 (1941)) deduced from Adams' 

observed absorption-line ratio that the effective excitation temperature of the 

J=0 and J=1 rotational level populations in the electronic ground state was 

2.3 K. As the transition between the J=0 and 3=1 rotational levels in the 

ground state corresponds to a photon of wavelength 2.64mn, this excitation 

temperature could be ascribed to exposure of the interstellar ON molecules to a 
radiation field at about 2.3 K. Even though this interpretation was noted in 

the classic textbook 'Spectra of DiatanicMolecules' by G.Herzberg in 1950, its 

significance was overlooked until a paper by Field and Hitchcock in Ap.J., 

146, 1 (1966) pointed out that this old observation was consistent with the 

existence of the 'primordial fireball' radiation on the line of sight to ' 
Oph i uch i . 

Since then various observers (see the review by Thaddeus) have shown that 

the level populations of molecular species in various directions through our 

galaxy correspond to an excitation temperature of 2.7 K. It is important that 
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there is no convincing evidence that the excitation terperature is anywhere 
much less than this, so that 2.7 K appears to be a minimum temperature for 
interstellar molecules that are in thermal ejuilibrium. (Obviously the 
excitation temperature can be higher in proximity to galactic sources of 
radiation, such as stars, clusters, etc.) We therefore have a growing body of 
evidence that the '2.7 K radiation' is black--body in spectrum, isotropic and 
unpolarised, and remote in origin. 

4.2.2 Is the 2.7 K radiation actually the 'Big Bang' fireball ? 

Although the hot Big Bang models must leave a radiative relic, the 
existence of the 2.7 K background does not by itself prove that there was a 
hot Big Bang. A number of alternative explanations have been proposed: a) that 
the 2.7 K background arises from a hitherto unknown class of discrete (i.e. 
localised) microwave emitter (e.g. Wolfe and Burbidge, Ap.J. , 156, 345 
(1969)), b) that it is radiation from interstellar or intergalactic dust 
grains, or c) that it is distant radiation but fran a Universe which began as a 
'cold' Big Bang but was later heated throughout by same process of local 
(astrcphysical) character rather than of global (cosmological) character. 

The discrete-source model was originally proposed in an attempt to rescue 
the Steady-State model from the apparently damning evidence that there was an 
early dense phase of the Universe. This model has the difficulty that the 2.7 
K background is too bright to be accountable for by known types of cosmic 
microwave emitters, such as stars, galaxies or quasars, and furthermore has a 
spectrum unlike any known exaiiples of such emitters. If the hypothetical 

sources were actually distributed in redshift (as would be necessary in a 
Steady-State model), the observed black--body form of the spectrum would then 

have to be an accidental corrbination of a norr-Planckian spectrum for each 
source conspiring with the effects of the redshift to add up to a simulated 
Planck Law for their integrated emission. The observed isotropy of the 2.7 K 

background also requires that a very large number of individual sources 
contribute the total radiation along any line of sight, so that a major new 
radio constituent of the Universe was being proosed. This long chain of 

assumptions is obviously not very eccncmical in comparison with the simple 

argument of Sec.4.l, and the discrete-source model has not found many 

supporters. 
The main difficulty of ascribing the background to radiation from dust is 

that grains are inefficient radiators at wavelengths much greater than the 

grain size and it is hard to conceive of a mechanism for producing a widespread 

medium ccrnprised of grains some centimetres in size. If the dust were supposed 

to be in our Galaxy the isotropy of the 2.7 K background is again hard to 

understand, while if it were outside our Galaxy the energetic problem of 

keeping the dust warm enough to radiate a 2.7 K spectrum is nontrivial (a 
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photon energy density c anparable to that of the 'Big Bang relic' interpretation 

would anyway be required) . It would also be surprising if the hypothetical 

mediun could exist without having other detectable effects, such as extinction 

and reddening of visible light. 

It is difficult to exclude possibility (c) , but it does seem contrived by 
canparison with the naive 'hot Big Bang' argument. 

4.3 Relativistic world-rrodels near the singularity 

4.3.1 The effect of pressure in the models 

In our neo-Newtonian world-models we developed the relation (1.8) 

R= ( A R3/ 3 - Q'i0) /R2, i.e. 

F = ( n - 4r<GQ) R/3 

The full analogue of this relation in a model based on General Relativity 
requires that the 'active density's be comprised of the terms 

(4.3) 3) _ ,gym + ?r + 3p/c2

where,Qm and fr  are the mass and radiation densities and p is the total 
pressure (including pressures of the matter and of the radiation). The 
addition of r toYm when computing the active density is intuitively 
reasonable, but the gravitational effect of pressure is a purely 
General-Relativistic effect whose Newtonian analogue seems obscure. 

This needed rnodif ication to the theory developed in Chapter One does not 
invalidate everything that went before because 'r  and p are insignificant in 
comparison with m for Trost epochs in any model which corresponds at all 
closely to the real Universe. Consider the radiative contributions in the 
present Universe. They are: 

Sr = ur /c 2 = a I4 /c2 = 4.6 x 10-31 kg/m3 for T = 2.72 K 

while pr = u r /3 = aT4/ 3, so 3pr/c2 also = aT4/c2

and the total radiative contribution to the active density is 9.2 x 10-31

kg/n for T = 2.72 K. This is less than 1% of the knaan mass density of the 
galaxies that was estimated in Chapter Three. 

The pressure exerted by the galaxies could be estimated as 

• 



• 

• 

• 

Pm = ?m<v2>/3 

where <v2 > is their mean square randam velocity around the Hubble flow. 

Sandage and Tammann claim that <v> is less than 50 km/s, and we would certainly 

be safe to put <v> < 300 km/s, in which case 

3p1 /c2 = 'm<v2>/c2 < 10-6Pm 

which shags that the pressure of the galaxies contributes negligibly to the 

active density in comparison with their mass density. This expression for the 

matter pressure also shows that we cannot neglect pm if the random velocities 

in the matter are ever -c. 

4.3.2 The model at R(t) --> 0 

The dynamical effects of ~r 
--> 0, because as in (4.1) 2r(t) 
as R-3(t). Also, as R(t) --> 0, 

and p cannot be neglected in the limit R(t) 
varies as R-4(t) while ?m (t) only varies 
kTr will became > m0c2, where m0 is 

the rest-mass of some class of material particle. When this occurs the matter 
must contain relativistic (v-c) particle-antiparticle pairs of this class, in 

equilibrium with the photons. If these pairs are in thermal equilibrium, their 
energy densities will each be um = xaT4 = xur , the x' s being numerical 
factors determined by the quantum statistics of that class of particle (see 
Section 4.4 below). If the matter is mainly comprised of relativistic 

particle-antiparticle pairs as R(t)-->0, the matter pressure term 3p/c2
will be -.Pm, so that the active gravitating density 

(4.4) --> 2,'r + 2m = 2 (1+~x)~r  = 2XQr

where the sum Zx is carried out over all types of particle pair that are 
present in the model. All exploding relativistic models in the neighbourhood 

of the singularity must therefore be governed by 

R --> (A - 8T GX4r ) R/3 

which for the 'hot Big Bang' models in thermal equilibrium can be written 

R --> /\R/3 - 8nGXaT4 ( t 0 ) R4 ( t 0 ) /3R3c2

As R —> 0 the second term dominates and the difference between models with 

different cosmological constants disappears, leaving all models obeying 

R = - C/R3, C = 8TrGXaT4 (t0 ) R4 ( t 0) /3c2 , i.e. 



R2 = C/R2 + constant 

As R --> 0 the constant becanes insignificant and all models satisfy 

R = (C)/R 

so that the cannon R(t) form is 

(4.5) R(t) _ (4C)1 / 4 't = (321rGXa/3c2) 1 / 4T(t0 )R(t0)-fit 

which can be canbined with the relation T(t)R(t) = T(t0)R(t0 ) from (4.2) to 
give 

(4.6) T(t) = (3c2/ 32zrGXa) 1 / 4 t 1 / 2 = l s2x ion. 
X-~'4 E viz 

• 

• 

This means that all exploding models have the same thermal history 
T(t), regardless of the subsequent evolution of their scale factor R(t) in the 

later matter-dominated era when Sm>~r. They remain indistinguishable until 
either the A-term takes effect at some expanded size or the non-relativistic 
matter density Qm becomes comparable to the radiation and radiation-pressure 
densities 4r and 3pr/c2 , after which the individuality of the models 
asserts itself. This property of the 'fireball' models allows us to make a 
unique classification of the earliest phenomena in the Big Bang on the basis of 
temperature or elapsed time almost independent of initial conditions in the 

matter. 

4.4 Classification of eras in the hot Big Bang 

In the earliest stages of the hot Big Bang, the radiation temperature will 

be so high that many photons have sufficient energy to create particle-

antiparticle pairs (kT > m0c2 is an approximate criterion for the 

temperature at which creation of particles of rest--mass m0 will be 

significant). Recent theoretical work in particle physics has suggested that 

the temperature could not exceed about 2 x 1012 K. This notion of a limiting 

temperature stems from the observation that the number of different species of 

elementary particle appears to increase exponentially with increasing energy; 

the measured density of mass states n(E) increases with energy as ebE with 
b-1 = 160 MeV. In thermodynamic equilibrium the mean energy of the mass 
states at a temperature T is then 

( CO 00 

<E> = J En(E) e-F✓ k rdE / 1 n(E) e-E/ kTdE 

0 0 
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which is non-convergent if k'r > b 1 . What would happen as T approached the 
maximum temperature would be that increases in the energy density would go into 
the creation of new massive particle-antiparticle pairs from the photons rather 

than into increasing the kinetic energy of pre-existing particles. The era t < 

10-5 sec is therefore difficult to describe in terms of our limited 
experience of particle physics, but at t > few x 10-' sec we can begin to 
apply familiar concepts. It is then convenient to label 'eras' of the 

development (cooling) of the hot Big Bang in terms of the states of 

matter-radiation equilibrium that will prevail during these eras. 

4.4.1 The hadron era (t < few x 10-5 sec) 

As there are many species of hadrons (strongly interacting baryons and 

mesons) and only three known species of leptons (electrons, muons and heavy 'r 
-leptons) and their associated neutrinos, the main constituents of the earliest 

era of the hot Big Bang will be hadrons, their antibaryons, and roughly equal 
numbers of photons. As the expansion proceeds and the temperature drops, the 

hadron-photon equilibrium 

H + H <--> by + hV 

• 

• 

shifts towards the right; the heaviest hadron (the massive baryons known as 
hyperons) will annihilate with their antiparticles to produce photon pairs as 

the baryon content cascades down to its lowest states (the nucleons). In so 

doing, the total number of baryons and antibaryons decreases, but the 

number of baryons minus the number of antibaryons is constant. This 

conserved quantity is known as the baryon number of the model. 

A key feature of this era is that not every nucleon found an antinucleon 

with which to annihilate as kT fell below m0 cz for nucleons (protons and 
neutrons). In particular, a net excess of protons over antiprotons appears to 

have survived to the present day. There are two possible interpretations of 

this; either there was a net excess of baryons over anti-baryons at the outset 

(i.e. models with the baryon number non-zero initially) or processes occurred 

which managed to separate baryons from anti-baryons to some extent into 

'pockets' which could no longer interact (the zero-baryon-nurr~er or 

'matter-antimatter' models) . 
The contribution of relativistic hadrons to the pressure at high 

temperatures will not be negligible throughout the hadron era, and the effects 

on the energy--density scale factor X of annihilation of the most massive 

hyperon-antihyperon pairs to produce photons will certainly modify the T-t 

relation (4.6) during the first - 10- sec. We do not yet know enough 

about the strong interaction to specify the evolution of the model throughout 

the hadron era. r'ortunately, the details of the hadron era are not preserved, 
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and our conclusions about what eventually emerges frcm a hot Big Bang are not 

very sensitive to the unknown aspects of the hadron era. 

4.4.2 The lepton era (few x 10-5 < t < -10 sec) 

Once kT falls below m~c2, where rr~ is the rest-mass of a pion, all 
remaining hadron-antihadron pairs have annihilated and the energy content of 

the Universe is shared among photons, leptons and their neutrinos, and the few 

remaining 'excess' nucleons. As the number of leptons will be about equal to 

the number of photons as long as kT >> m3c2 for the leptons, the surviving 
nucleons will be a minority of the particles present, so this is now the 
'lepton era'. The leptons obey Fermi-Dirac statistics such that the 

prcbability of finding a lepton in a state with energy E and momentum p is 

P(E) _ (e5(P)/kT + 1)-i 

and E2 = p2c2 + ( 2 ) 2 _-> p2c2 for kT >> rtb c2

Fran normal 'particle-irr-a-box' wave mechanics, we have that the nurrber of 

available single-particle states with rromenta in a range (dpx ,dpy,dpZ ) in 
a spatial volume V is gVdpxdpydp./h3, where g is the number of 

available spin states of given momentum (g = 2 for leptons). Thus the 

equilibrium number density of muon-antimuon or electron-positron pairs of a 

given type (for which g = 2) with ncxnenta between p and p+dp is 

n(p) _ (8n/h3)P2~/(e I /kT + 1) 

and the total energy density in one of these lepton-antilepton pairs in 

equilibrium at temperature T is 

u = 2 sn(p)E(P)dp 
o 

_ (16~tc/h3) J p3dp/ ( epc/ kT + 1) 
0 

_ (7/4) aT4

The neutrinos have only one spin state so for them g = 1 and each type of 

neutrino-antineutrino pair contributes u = (7/8)aT4 in equilibrium. 

These results justify the assertion made earlier (Section 4.3.1) that the 

relativistic particle-antiparticle pairs in statistical equilibrium will have 

energy densities u = xaT4. In thermodynamic terms the only difference 

between relativistic gases of photons, leptons and neutrinos is their values of 

x=1, x=7/4 and x=7/8. Fbr most of the lepton era, the temperature is below kT 



= mµc2 where mµ, is the mass of a muon, so the muons annihilate early and the 

main contributions to the energy density are photons, electrons and electron 

and muon neutrinos. The neutrinos of the recently-discovered heavy T-lepton 

(Perl et al., Phys.Letters, 63B, 466 (1976) ) may also contribute, but 

it is not yet known if they are as light as electron or muon neutrinos, so we 

will exclude them here. In this case the total energy density after muon 

recombination is: 

utot ur + ue + un = (1 + 7/4 + 7/4) aT4 = (9/2) aT4

in which case through most of the lepton era X=9/2 and our earlier relation 

(4.6) becomes 

(4.7) T(t)  = (c 2/48nGa)1/4 t 1/2 

s 

which can be written t = (T10) -2 sec, where T10 is the temperature in 
units of 1010K. Equation (4.7) specifies the thermal history of the model 

for the lepton era after the moons have decayed. 

The assumption of therrrodynarnic equilibrium between the radiation and the 

electron-positron pairs would not be valid if the model expanded faster than 

the rate at which interactions between the electrons and the photons could 
bring them to equilibrium. while the expansion proceeds as R(t) oc .[t, the 

scale-doubling time is 4t, i.e. of order seconds throughout the lepton era. 

The characteristic time scale for bringing the pairs and photons to equilibrium 

will be -- 1/O nc where QT is the Thamson cross-section of an electron 

and n is the particle density. This time scale is ,.l0-21  sec at T 

l011K, so equilibrium is achieved virtually instantaneously compared with the 

expansion rate. 

The lepton era ends when the temperature falls below kT = m0c2 for an 

electron (T = 5.9 x 109 K) at t - 7 sec; after this the electrons and 

positrons annihilate. The neutrino gas is effectively decoupled from the rest 

of the model at this time and expands to form a relic neutrino flux analogous 

to the 2.7 K relic photon flux. 

To preserve macroscopic charge neutrality, it is necessary that the number 

of excess electrons over positrons at the end of the lepton era equals the 

number of excess protons over antiprotons, i.e. that the net proton number 

equal the net electron number. The mechanism by which this balance was 

obtained is an unknown facet of the 'original conditions' whose origin is obscure. 

4.4.3 The radiation era (10 sec < t < t(Qr=Ym)) 

Cnce the electron-positron pairs have annihilated, the energy density in 

photons greatly outweighs that in the particles, and the Universe enters a 
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photon-daninated era that can be described fairly precisely by equation (4.6) 

with X=1; this is normally termed the 'radiation era'. To see that the photon 

background, rather than the neutrino background, dominates the dynamics, 

consider the entropy of the expanding model. The first and second laws of 

thermodynamics for fluids undergoing quasistatic processes can be expressed by 

TdS = dU + pdV 

where S is the entropy. For a relativistic gas satisfying p = u/3 = U/3V this 

can be written 

TVl/3dS = V1/3dU + (1/3) 
UV_2

/3dV = d(UV1/3) , f ram which 

dS = d ( UV1/3) /TV1/3

For a relativistic gas with u = XaT4, U = XaT4V, it follow that 

d3 = d(XaT4V4/3)rrVu3, i.e. 

dS/dV = (4/3).XaT3

The entrcpy of a volume V of relativistic gas at temperature T is therefore 

S = (4/3) .Xar3.V 

At the time of annihilation of the electrons and positrons, the neutrino gas is 

decoupled from the other components of the model, and is cooling with Trlae 

1/R(t). The annihilation of the electrons and positrons would reduce the 

entropy of the lepton-photon gas by decreasing its value of X from 11/4 to 1, 

and this must be compensated in an adiabatic (isentrcpic) expansion by an 

increase in the photon temperature, such that 

(4/3) (1 + 7/4) aTrL _ (4/3) aT 

where Tri is the initial temperature of the radiation before 

electron-positron annihilation and Trf is the final temperature of the 

radiation after the annihilation. The radiation temperature is therefore 

increased by a factor (11/4)1/3 as a result of the electron-positron 

annihilation, while the neutrino temperature is unaffected. Throughout the 

later stages of the model Tr = (11/4)1/3. Tn and the photon energy density 

r 

= aT4 is therefore 10.9 times the neutrino energy density un = 

(7/4) aT4. 

Once the annihilations are complete, the nunber of photons in the Universe 

is constant (absorption and re-emission processes involving excited states of 
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the matter should cancel on average), so that the number density of photons 
decreases as R 3. (This number density is pra~ortional to the entropy of the 
photon gas per unit volume). The relative numbers of photons and baryons at 

the end of the lepton era must therefore have been essentially the same as 
their relative numbers now. The number density of photons in a black-body 
radiation field at temperature T is 

n1  = 16iT'(3) . (kT/ch) 3, by integration over the black-body spectrum, 

where `. is the Riemann zeta function. (3) = 1.202, and this relation reduces 
to 

n~ = 2.03x107 .T3 m-3

which for T = 2.72 K gives n1  - 4 x 108 m-3. Fran Section 3.6.5, it is 
reasonable to take the mean matter density to be - 4.6 x 10-28 kg.m-3 now 

(4m(tO) = 1000'r (tO) for convenience). In this case, nb now is -

0.3 m
-3 

so that for the nodel we are living in 

ni/nb 1.5 x 109

As the photons were mainly produced from hadron-antihadron pairs the initial 

fractional excess of hadrons over antihadrons in models with non -zero baryon 

number must have been <10-9. Fran this small excess we must trace the 

history of the structures of the matter content of our Universe. 

•The radiation era ends when Sr drops belay m so that the dynamics of 

the model go over to those described in Chapter One. The red shift ze and 

time to at which this occurs must satisfy 

R(tO)/R(te) = 1 + ze = ?m( k ) /gr (tO) 

With our estimates of Sr (tO) and 4m(to) , ze must be 1000, at which 

era the temperature T(te ) would be 2720 K. The time after the singularity 

at which the radiation era ends can therefore be estimated by finding when the 

temperature should have dropped to 2720 K according to equation (4.6) with X=1. 

This is only an approximation because the validity of equation (4.6) cannot 

extend all the way to 3r = qm, but the result shwas that tE - 106 yrs, 

so the radiation era is iruch longer than those which preceded it. Clearly, our 

data on discrete astronomical sources (galaxies, quasars), are confined to 

z<<1000 and thus apply entirely to the matter—daninated era. 
Note that the estimates of red shift, temperature and time 

the radiation era are sensitive to the adopted value of

were increased by a factor f, ze and Te would be about a factor 

and t o would be a factor f 2 shorter. 

at the end 
if this 
f larger, 

of 
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4.4.4 The plasma era (10 sec < t < t(T--3500) ) 

Another important characterisation of the post-lepton era is based on the 

state of ionization of the matter; the 'plasma era' spans the times at which 

the temperature is high enough to maintain the matter essentially fully 

ionized. Chapter Five will demonstrate that the transition from fully--ionized 
to neutral matter signals the beginning of an era when fluctuations in the 

matter density can be gravitationally stabilised. 

The ionization equilibrium of the matter at temperature T is governed by 

the Saha Equation, which is obtained frcm the following considerations. In 

thermal equilibrium, the ratio of populations of two atcanic states, 1 and 2, 

with energies El  and E2 is 

N2/Nl = (g2/gl)e-(E2~El
)/kT

where gl and g2 are the degeneracies of the two states. In hydrogen, the 

degeneracy of the n-th orbital state is 

gn = (electron spin degeneracy) x (orbital degeneracy) 

=2n2

so the ratio of pcpulations of the n'th state and the ground state (n=1) is 

= n2e-  (En + I) /kT 

where I is the ionization potential of the hydrogen atcm (13.6 eV). At 
sufficiently lcw temperatures, most of the hydrogen will be in the ground 
state, so N1 -- NH . At high temperatures, we should stxm over all bDund 
states, so that 

NH = 
ti

= N1 n2e-(En + I)/kT 

This sum diverges if taken to very high n. It is unrealistic to include in the 

sun those very high-n states that will be unstable to collisional ionization, 

so the expression for NH should in fact be written 

(4.8) NH = N1 
n2pne_(En + I)/k2 

where pn is the probability that the atom can remain in the n—th state during 

a collision at temperature T; pn decreases as n and T increase. We must also 

consider the equilibrium 

• 
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neutral H <--> p + e 

by computing the occupancy of the free-electron states with positive energies E 

= p2/2m (we can use this non-relativistic p-E expression throughout the 

plasma era). As the number of free-electron states with momenta between p and 

p+dp in spatial volume V is 

dN ( p) = V.4lrp2dp/h3, we have 

Ne(p)dp/Nl = (gp9e/g1).V. (4~tp2/h3) .e ( (P2 /Zm) 

As the volume available per electron is V = 1/no where nP 
is the proton 

number density, and the degeneracies are gp = 1 for a free proton, ge = 2 

for a free electron and g1 = 2, we can write 

~ 
Nenp/N1 = (4m/h3) J p2e- ((P2/ 2m) + I)/kTdp 

0 

which on ccnverting to number densities of electrons and atoms is 

(4.9) nenp/n1 = ( (,(2mnk)/h) 3.T3/2,e-I/kT 

+ I)/kT 

This and equation (4.8) constitute the Saha Equations for ionization in thermal 

equilibrium. 
The salient point is that the number of ionized hydrogen atoms goes up 

much faster than e-I/kT as the temperature increases, because of the T3/2 

factor in equation (4.9). This happens because there are many rrore free states 

than bound states available to the electrons as the temperature rises, so at 

higher temperatures the Boltzmann factor e I/kT becomes offset by the 
state-density factor. As a result, hydrogen at most densities becomes fully 
ionized at temperatures well below that at which kT - I (T 160,000 K). 

Taking a rrodel Universe with ym(t() = 4.6 x 10-28 kg/m3 composed 
primarily of hydrogen (we will see below that this composition is a fair 

approximation), equations (4.8) and (4.9) can be used to show that the matter 

would be >99% ionized for temperatures >4400 K, but <1% ionized for 
temperatures <2800 K. We can therefore consider that the electrons and protons 

recambine to form neutral hydrogen atoms at a matter temperature Tm - 3500 

K, which will be reached at a redshift zrec 1285 if Tm is close to 

Tr. We shall see that the matter and radiation are still strongly coupled by 
Thomson scattering up until recombination, so that this assumption is fair. If 

we use equation (4.6) with X=1 to describe the model at t < trec, we can 

estimate that tree - 1.88 x 1013 sec, or 5.9 x 10 5 years. Use of 
equation (4.6) is justified so long as the Universe does indeed have trec < 
tel i.e. so long as reconbination occurs before the radiation ceases to be 

dynamically dominant. The validity of this assumption depends on the actual 
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value of the factor f that was discussed at the end of Section 4.4.3. 

4.5 Nucleosynthesis in the Fireball 

Throughout the hadron era, kT was much greater than the 

photcdisintegration energies of stable nuclei, so that no nuclei would emerge 

from the hadron era, only free protons and neutrons. During the lepton era, 

the surviving nucleons will come to statistical equilibrium with the leptons 

and neutrinos through the weak interactions: 

P + ye <--> n + e+ 

p+e <--> 

n+Ne

for which the time to reach equilibrium varies as - (T10)-5; a factor --

(1i0)-2 here derives from the energy-dependence of the cross-sections for 

these reactions and a factor - (T10)-3 fran the particle density. Given 

that the expansion time-scale of the model varies as (T10)-2, the time to 

reach neutron-proton equilibrium remains shorter than the expansion time until 

the temperature reaches 1010 K, after which the neutron-proton ratio lags 

behind the temperature drop in the expanding model. After the 

electron-positron pairs annihilate the free neutron decay 

(4.10) n --> p + e- + ye, 

whose half-life is 10.8 min, eventually depletes the neutrons. For T > 1010K 

the relative numbers of neutrons and protons will therefore be determined by 

the Boltzmann factor 

(4.11) n np = e-(mn - mp)c2/kT

where (mn - mp)c2 = 1.293 MeV. It is a coincidence that the 

neutron

-proton 

ratio is 'frozen in' at T 1010 K just as this Boltzmann 

factor becomes an interesting function of temperature, i.e, the inverse beta 

decay rate is coincidentally of the same order of magnitude as the expansion 

time sole near kT - (mn - mp)c2. The 'frozen-in' neutron-proton ratio 

can be obtained by putting T - 1010 K in equation (4.11), i.e. nil/np

- 0.22. When T falls below 1010 K not only does the expansion outstrip the 

equilibration of the neutrons and protons, but the equilibrating reactions are 

themselves shut off when the electrons and positrons annihilate at the end of 

the lepton era. 

We can therefore see that almost any hot Big Bang model (except those 

which contrive to prevent neutron-proton equilibrium being reached by 
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postulating large initial excesses of same form of particle) must predict the 

same neutron-proton ratio near the end of the lepton era. This fact in 

turn allows relatively straightforward predictions of the path of 

nuclecsynthesis, i.e. of the formation of nuclei by fusion processes, during 

the early phases of the radiation era. 

4.5.1 Synthesis of He4 in the fireball 

After the neutron-proton ratio is frozen in, the principal reactions 

involving neutrons are the free neutron decay and the formation and 

photodissociation of deuterons 

n+p<--> D+h' 

While kT > 2.225 MeV (the binding energy of the deuteron), photodissociation of 

the deuterons holds this reaction in an equilibrium which we can compute in the 
same manner as the Saha ionization-equilibrium equation (4.9): 

• 

• 

(4.12) nnrVnD = 4/3. ({2i/h) 3. (mnmp/mb) 3/2.`r3/2.e-B/kT 

where B = 2.225 MeV. Given that the present baryon density nb(tO) -3x 

10-~ m 3 (Section 4.4.3), the total baryon density at temperature T and 

earlier time t should be approximately 

nb(t) = nb(tO).R3(tO)/R3(t) _ x 10 1 . (T/2.72) 3 m 3

using which we can calculate nn, np and nD as a function of T. Equation 
(4.12) then shows that the deuteron production-dissociation equilibrium shifts 

sharply in favour of deuteron production at temperatures below T - 8x108

K, a condition which occurs during the radiation era at t - 200 sec. This 

leads to a second numerical coincidence : the fusion of the neutrons to form 

rhoto-stable deuterons becomes favoured just as the neutron abundance begins to 

be depleted noticeably by the free neutron decay. 

Once deuterium begins to accumulate at T < 8x108 K, it is fused to He4

by reactions which amount to 

D + D --> He4 + hV 

These proceed so rapidly that essentially all of the deuterium produced is 

converted to He4 . If every neutron that was frozen in at T=1010 K 
ultimately ended up in a He4 nucleus, we would initially have 18 neutrons and 

82 protons among every 100 nucleons, and these 18 neutrons would have combined 

with 18 protons to leave 36% of the final mass of the model in the form of 
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He4. In fact, if we allow for all of the known nuclear reactions that could 

occur in the radiation era and calculate the depletion of neutrons by the free 

neutron decay between the 'freezing-in' at T=1010 K and the onset of 

deuterium stability at T = 8x108K, we expect a somewhat lower He4 mass 

fraction of 25%+3% (Wagoner, Ap.J. , 179, 343 (1973) ; Yang et al., 

Ap.J., 227, 697(1979)) in the 'standard' hot Big-Bang model. 

Fusion of this helium to more massive nuclei is strongly inhibited by the 

instability of the putative nuclei of mass 5 and mass 8, so the 'standard' hot 

Big-Bang model predicts that the material emerging fran the fireball would be 

about 25% helium by mass, unless either the neutron-proton equilibrium is 

sameha✓ distorted by the initial conditions or our estimates of the (T, nb, 

t) parameter canbinations in the standard model are incorrect. If, for 

example, the temperature fell to 8x108 K in a time that was significantly 

longer than 200 sec, then most of the neutrons would be removed by the free 

neutron decay before they could be incorporated into deuterons; this would 

'shut dawn' the He4 production. We will discuss same non-standard 

possibilities in Section 4.5.5 below, but first let us consider whether there 

is any evidence in the observed Universe for a primordial -25% He4 mass 

fraction that could be a passible 'fossil relic' of the proposed primordial 

fireball. 

4.5.2 Observed He4 abundances 

The spectral lines of neutral helium atoms are mainly in the ultraviolet, 

so the spectroscopic evidence for the presence of He4 comes mainly from 

observations of the visible spectra of systems that are likely to contain 

singly-ionised helium. The surface abundances of stars are not generally 

expected to be mixed with the products of nucleosynthesis in stellar cores, so 

these surface abundances in most cases should indicate the abundances in the 

interstellar gas at the time the stars were formed. In the massive OB stars of 

Population I in our galaxy, the observed He4 mass fraction is about 0.28, 

while the fraction in solar cosmic rays is about 0.20. 

Indirect evidence for the He4 abundance in a variety of stellar sysems 

comes fran calculations of stellar models. The luminosity of a homogeneous 

star with a mass near one solar mass depends on the mean molecular weight to 

the 15/2 pacer, and the mean molecular weight depends mainly on the assumed 

He4 abundance. Recent solar models which fit the age and luminosity require 

an initial solar helium abundance of -0.23 (Bahcall et al., Ap.J., 

184, 1 (1973); Ulrich and Rood, Nature Physical Science, 241, 111 

(1973)). Such models cannot however account for the reportedly low solar 

neutrino flux, and the inhomogenous models that have been proposed to match the 

neutrino flux lead to lower values of the initial solar He4 abundance. 

Studies of old star clusters give constraints on the helium abundance fran 
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attempts to fit the observed mass, luminosity and age parameters to stellar 
models. Typical derived aundances are --0.25 (e.g. Rood, Ap.J., 184, 815 
(1973) ; Bohm-Vitense and Szkody, Ap.J., 184, 211 (1973) ), with 
uncertainties generally about +0.06. 

Optical and radio studies of the helium abundance in HII regions in our 
Galaxy and in neighbouring galaxies favour values between 0.25 and 0.30, while 
helium abundances inferred for Cepheid variables in the Magellanic Clouds and 

in M31 are --0.29 (Iben and Tuggle, Ap.J. , 197, 39 (1975) ) . In a study of 

the stellar content of dwarf spheroidal galaxies, Hirshfield (Yale thesis, 

1978) found a heliurr abundance of 0.24+0.02. 

We therefore have quite reasonable evidence for a 'global' He4 mass 

fraction that is of order 0.23-0.29; depending on the nature of the object 

whose He4 abundance was measured, the observed abundances should be decreased 

by fran 5% to 2% to allow for the buildup of He4 in the interstellar medium 

as a result of the processes of stellar evolution. The observations are 

therefore quite consistent with a 'global' primordial He4 fraction that was 

0.25+0.03. This agreement is widely interpreted as evidence in favour of 

the 'standard' hot Big-Bang models. The strength of this argument is the 

extreme difficulty we would have in explaining how the observed He4 abundance 

could be so large and so uniform by any process other than Big -Bang synthesis. 

The main cause for disquiet about this 'confirmation' of the predicted 

helium mass fraction is the existence of sane old Population II stars with 

surface helium abundances that are about ten times lower than the mean 

abundances given above (e.g. Uanziger, Ann. Rev. Astron. Astrophys., 8, 161 

(1970)). Most of these helium-poor stars show other 'anomalous' element 

abundances which suggest that their surface canpositions have been 

significantly altered by their 'internal' astrophysics, but this is not always 

the case. It is not yet clear whether these helium-poor stars can be dismissed 

as unusual systems in which local phenorrena have succeeded in 'hiding' the 

primordial abundance, or alternatively whether they are the only places in the 

Galaxy where we see a truly primordial, but law, helium fraction that is in 

conflict with the standard Big-Bang model. 


