QUEEN'S UNIVERSITY AT KINGSTON
School of Graduate Studies and Research
December 13, 1982
PHYSICS 831*
THREE HOURS

Answer both Questions from Section A and ONE Question from EACH of Sections B and C, for a total of FOUR Questions. All Questions carry equal marks.

Chemical Rubber Co. Mathematical Tables are available on request.

The following constants and formulae may be assumed in any Question:

$$
\begin{aligned}
& \mu_{0}=1.26 \times 10^{-6} \mathrm{~m} \cdot \mathrm{~kg} \cdot \mathrm{C} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Nt} \cdot \mathrm{~m}^{-2} \cdot \mathrm{C} \\
& c=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
& e=1.60 \times 10^{-19} \mathrm{C} \quad \text { (charge of the electron) } \\
& m=9.11 \times 10^{-31} \mathrm{~kg} \text { (mass of the electron) }
\end{aligned}
$$

Larmor Formula

$$
\langle p\rangle=\frac{q^{2}\left[\dot{j}^{2}\right]}{6 \pi \varepsilon_{0} c}
$$

Classical radiation reaction force

$$
F_{T}=\frac{q^{2} \ddot{\sim}}{6 \pi \varepsilon_{0} c^{3}}
$$

Multipole expansion of vector potential from system of charges (radiative terms only)

$$
a\left(r_{f}, \omega\right)=\frac{\mu_{0}}{4 \pi} \cdot \frac{e^{i k R_{0}}}{R_{0}}\left[\dot{d}-i k\left(\frac{1}{6} \dot{\sim}+\underset{\sim}{\mu} \times \approx\right)+\ldots .\right]
$$

$$
d=\sum_{i} q_{i} r_{i}
$$

$$
\underset{\sim}{\mathcal{M}}=\frac{1}{2} \sum_{i} q_{i}\left(\underline{r}_{i} \times \underline{v}_{i}\right)
$$

$$
D_{\alpha}=\sum_{\beta} n_{\beta}\left(\sum_{i} q_{i}\left(3 x_{i \alpha} x_{i \beta}-r_{i}^{2} \delta_{\alpha \beta}\right)\right)
$$

Kirchhof-Helmholtz Integral

$$
\psi_{p}=\frac{1}{4 \pi} \oiint_{S}\left(\psi \nabla\left(\frac{e^{i k r}}{r}\right)-\frac{e^{i k r}}{r} \nabla \psi\right) \cdot d S
$$

Fourier Transform Integrals

$$
F(t)=\int_{-\infty}^{\infty} f(\omega) e^{-i \omega t} d \omega, \quad f(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(t) e^{i \omega t} d t
$$

Parseval's Theorem for Fourier Transforms

$$
\int_{-\infty}^{\infty} F^{2}(t) d t=4 \pi \int_{0}^{\infty}|f(\omega)|^{2} d \omega
$$

$$
\begin{array}{ll}
\int_{0}^{\pi / 2} \sin ^{3} \theta d \theta=\frac{2}{3} & \sum_{n=0}^{n=N-1} x^{n}=\frac{x^{N}-1}{x-1}
\end{array} \int_{0}^{a} \frac{x^{2 m+1}}{\sqrt{a^{2}-x^{2}}} d x=\frac{m!2^{m} a^{2 m+1}}{(1 ; 2 ; m+1)}
$$

In spherical polar co-orvinares (γ, θ, ϕ),
$\underset{\sim}{\nabla} \times \underset{\sim}{v}=\frac{\hat{\tau}}{r \sin \theta}\left\{\frac{\partial}{\partial \theta}\left(v_{\phi} \sin \theta\right)-\frac{\partial v_{\theta}}{\partial \phi}\right\}+\frac{\hat{\theta}}{r}\left\{\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi}-\frac{\partial\left(r v_{\phi}\right)}{\partial r}\right\}+\frac{\varnothing}{r}\left\{\frac{\partial\left(r v_{\theta}\right)}{\partial r}-\frac{\partial v_{r}}{\partial \theta}\right\}$ where $\mathcal{\sim}$ is any vector $\left(v_{\tau} \hat{\sim}, v_{\theta} \hat{\theta}, v_{\phi} \hat{\sim}\right)$

Section A. Answer BOTH Questions

1. Calculate the average power radiated per unit solid angle by an electric dipole of moment d rotating in a plane with constant angular velocity Ω, as a function of the angle from the axis perpendicular to the plane. Average over the period of the rotation of the dipole. Describe the polarization state of the radiation as a function of the angle.
2. A bound electron in an atom is modelled as a classical harmonic oscillator of natural (undamped) oscillation frequency ω_{0}, subject to damping by the radiation reaction. Derive expressions for:
(a) the band width between half-power frequencies of the power spectrum radiated by the electron when set into free (unforced) oscillation,
(b) the cross-section of the electron for scattering of plane waves of frequency ω, integrated over all scattering directions.

State carefully any assumptions made.

Section B. Answer ONE Question from this Section

3. A one-dimensional diffraction grating produces amplitude modulation

$$
\psi=1+m \cos (2 \pi x / d) \quad(m<1)
$$

and extends from $-D / 2<x<+D / 2$ along the x axis. The width D of the aperture is large compared with the wavelength d of the amplitude modulation. Derive an expression for its Fraunhofer diffraction pattern when it is illuminated with plane waves of wavelength λ.

Describe how this pattern would be modified if the transparency of the aperture also varied linearly from unity at its centre to zero at its edge, producing the illumination:

$$
\psi=(1+m \cos (2 \pi x / d))(1-2|x| / D)
$$

Note: your results may be expressed as the convolutions of simple functions, without actual evaluation of convolution integrals.
4. Derive an expression for the far-field intensity distribution of the radiation diffracted by a linear array of N identical transparent square apertures illuminated in phase by a monochromatic plane wave of constant amplitude over the array. The apertures are each of side a and their centres are distance D apart. The apertures do not overlap one another, are all in the same plane, and the area of the plane between the apertures is completely opaque.

What restrictions would you place on the validity of the expression you have derived, and why ?

Section C. Answer ONE Question from this Section

5. Two identical charges +q are constrained to oscillate harmonically at angular frequency ω about the origin of coordinates along the z axis. Their motions have the same amplitude a but are exactly in antiphase, so that they reach opposite ends of their travel together and pass through the origin, in opposite directions, together. Calculate the angular distribution of their radiation, neglecting their mutual Coulombic interaction. Assume their motions to be exactly collinear, i.e. ignore the practical complication of how they pass each other at the origin.
6. Two particles with masses m_{1} and m_{2}, carrying positive charges q_{1} and q_{2}, start directly towards each other with relative velocity $v_{0}(\ll c)$ at infinity. They are prevented from colliding "head on" by their Coulomb repulsion, but their motions are collinear at all times. Calculate the total energy radiated during their encounter, stating any assumptions made.

1. Find the expressions for the radiation from an electric ∂ ip ole d rotating in a plane with constant angular velocity Ω as a function of the angle θ from the axis perpendicular v_{0} the plane, averaped over re e period of the rotation. Describe the polenzarion stare of the redicrion as a function of this angle.
averaged over one period

$$
\begin{aligned}
& \text { Here } d x=d \cos \pi t \\
& \ddot{d}_{x}=-\Omega^{2} d \cos \Omega t \\
& d y=d \sin \Omega t \\
& d \ddot{y}=-\Omega^{2} d \sin \Omega t \\
& d z=0 \\
& \dot{d}=\Omega \times d \\
& \tilde{d}=\tilde{\sim} \times \underset{\sim}{d} \quad(\Omega=\text { cons }) \\
& =\widetilde{\sim} \times \tilde{\Omega} \times \underset{\sim}{d}=-\Omega^{2} \underset{\sim}{d} \\
& E_{r a d}=\frac{n \times(n \times \ddot{d})}{4 \pi \epsilon_{0} c^{2} R} \\
& \underset{\sim}{n}=-i \sin \psi+\underset{\sim}{k} \cos \psi \\
& \ddot{d}=-\Omega^{2} d(i \cos \Omega t+j \sin \Omega t) \\
& \underset{\sim}{n} \times \underset{\sim}{d}=-\left|\begin{array}{ccc}
\underset{\sim}{i} & \underset{j}{i} & \underline{k} \\
-\sin \psi & 0 & \cos \psi \\
\cos \Omega t & \sin \Omega t & 0
\end{array}\right| \Omega^{2} d=-\Omega^{2} d(-i \cos \psi \sin \Omega t+j \cos \psi \cos \Omega t-k \sin \psi \sin \Omega t) \\
& \approx \times \approx \times \ddot{d}=-\Omega^{2} d\left|\begin{array}{ccc}
i & j & k \\
-\sin \psi & 0 & \cos \psi \\
-\cos \psi \sin \Omega t & \cos \psi \cos \Omega t-\sin \psi \sin \Omega t
\end{array}\right| \\
& =-\Omega^{2} d\left(-i \cos ^{2} \psi \cos \Omega t-j\left(\cos ^{2} \psi+\sin ^{2} \psi\right) \sin \Omega t-\underset{\sim}{k} \sin \psi \cos \psi \cos \Omega t\right) \\
& \left|E_{\mathrm{rad}}\right|=\frac{\Omega^{2} d}{4 \pi \epsilon_{0} c^{2} R} \sqrt{\left(\cos ^{4} \psi+\sin ^{2} \psi \cos ^{2} \psi\right) \cos ^{2} \Omega t+\sin ^{2} \Omega t} \\
& \left|H_{r c d}\right|=\frac{1}{\mu_{0}} \underset{\sim}{B} \text { rad }=\frac{n^{n} \times \underset{\sim}{E}}{\mu_{0} c} \\
& R^{2}|\underset{\sim}{E} \underset{\sim}{M}|=\frac{\Omega^{4} d^{2} \cdot R^{2}}{16 \pi^{2} E_{0} A R^{2} \mu_{0} c}\left(\cos ^{2} \psi \cos ^{2} \Omega t+\sin ^{2} \Omega t\right) \\
& \left\langle\frac{d P(\psi)}{d \Omega}\right\rangle=\frac{\Omega^{4} d^{2}}{32 \pi^{2} \epsilon_{0} c^{3}}\left(1+\cos ^{2} \psi\right) \\
& \psi=\theta \text { of Question }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Erad at } \psi=0, \sin \psi=0 \\
& \cos \psi=1 \\
& \text { Ered } \alpha-\underset{\sim}{i} \cos \Omega t-j \sin \Omega t \quad \text { circuler poterized. } \\
& \begin{array}{ll}
\text { Ered at } \psi=90^{\circ}, & \sin \psi=1 \\
\cos \psi=0
\end{array} \\
& \begin{array}{l}
\text { Ered } \alpha-j \sin \Omega t
\end{array} \quad \text { lineer prenzed. }
\end{aligned}
$$

Gererd polerizenio sfere is elliprice.
2.(a) Eqn. of motion of election in unforced oscillation

$$
\begin{aligned}
\ddot{x}+\Gamma \dot{x}+\omega_{0}^{2} x=0 \quad & F_{r}=\frac{q^{2} \ddot{\sim}}{6 \pi c_{0} c^{3}} \rightarrow \Gamma \sim \frac{q^{2} \omega_{0}^{2}}{6 \pi \epsilon_{0} c^{3} m} \\
& \text { so } \Gamma=6.25 \times 10^{-24} \omega_{0}^{2}
\end{aligned}
$$

$$
\text { Then } \begin{aligned}
x(\omega) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(t) e^{i \omega t} d t \\
& =\frac{A}{2 \pi} \int_{0}^{\infty} e^{ \pm i \omega_{0} t} e^{-\Gamma / 2} e^{i \omega t} d t \\
& =\frac{A}{2 \pi}\left\{\frac{1}{i\left(\omega \pm \omega_{0}\right)-\Gamma / 2}\right\}
\end{aligned}
$$

$$
\ddot{x}(\omega)=\frac{A}{2 \pi}\left\{\frac{\omega^{2}}{i\left(\omega \pm \omega_{0}\right)-\Gamma / 2}\right\}=-\frac{A}{2 \pi}\left\{\frac{\omega^{2}\left(\left(\omega-\omega_{0}\right) i-\Gamma / 2\right)}{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2} / 4}\right\}
$$

$$
|\ddot{x}|=\frac{A}{2 \pi} \omega^{2} / \sqrt{\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2} / 4}
$$

Lermor $\rightarrow \quad P=\frac{q^{2} \ddot{x}^{2}}{6 \pi \epsilon_{0} c^{3}}$

$$
P(\omega) \vdots \frac{q^{2} A^{2}}{6 \pi \epsilon_{0} c^{3} \cdot 4 \pi^{2}}\left\{\frac{\omega_{0}^{4}}{\left(\omega \omega_{0}\right)^{2}+r^{2} / 4}\right\}\left(u \sim \omega_{0}\right)
$$

$P \rightarrow \frac{1}{2} P_{\text {max }}$ at $\Delta w=\Gamma / 2$. full wide $2 \Delta \omega=\Gamma=\frac{q^{2} \omega_{0}^{2}}{6 \pi \epsilon_{0} c^{3} m}$

$$
\begin{aligned}
& \text { Let } \left.\begin{array}{rl}
x & =A e^{\alpha t} \\
\dot{x} & =A \alpha e^{\alpha t} \\
\ddot{x} & =A \alpha^{2} e^{\alpha t}
\end{array}\right\} \quad \alpha^{2}+\Gamma \alpha+\omega_{0}^{2}=0 \\
& \ddot{x}=A \alpha^{2} e^{\alpha t} \quad \alpha=\frac{-\Gamma \pm \sqrt{\Gamma^{2}-4 \omega_{0}^{2}}}{2} \\
& \begin{array}{c}
x(t)=A e^{-\sqrt{t} / 2} e^{ \pm i \omega_{0} t} \text { if } \Gamma^{2} \ll 4 \omega_{0}^{2} \\
\quad(t>0)
\end{array} \\
& \text { (ok for } \omega_{0} \ll 10^{23} \mathrm{rdd} / \mathrm{s} \text {) }
\end{aligned}
$$

- (b) Forced oscillerion $\ddot{x}+\sqrt{\dot{x}}+\omega_{0}^{2} x=\frac{q c}{m} e^{-1 \omega L}$ By andogy $x(t)=\frac{q E}{m} \cdot \frac{1}{-i \omega \Gamma+\left(\omega_{0}^{2} \cdot \omega^{2}\right)} e^{-i \omega t}$

$$
\begin{aligned}
\text { So } x(\omega) & =\frac{q E}{m} \cdot \frac{1}{\left(\omega_{0}^{2}-\omega^{2}\right) \cdot i \omega \Gamma} \text { by inspection } \\
\ddot{x}(\omega) & =\frac{-q E \omega^{2}}{m\left(\left(\omega_{0}^{2}-\omega^{2}\right)-i \omega \Gamma\right)}
\end{aligned}
$$

Hence by harmor $P=\frac{q^{2} \ddot{x}^{2}}{6 \pi \epsilon_{0} c^{3}} \rightarrow \frac{q^{4} \omega^{4} E^{2}}{m^{2}\left(\left(\omega_{0}^{2} \omega^{2}\right)^{2}+\omega^{2} \Gamma^{2}\right)} \cdot \frac{1}{6 \pi \epsilon_{0} c^{3}}$

$$
\begin{aligned}
& \frac{\langle P\rangle}{I}=\sigma=\frac{q^{4} \omega^{4}\left\langle E^{2}\right\rangle}{m^{2}\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \Gamma^{2}\right)} \cdot \frac{1}{6 \pi t_{0} c^{3}} \cdot \frac{1}{\epsilon_{0} c\left\langle E^{2}\right\rangle} \\
& \text { i.e. } \sigma=\frac{q^{4} \omega^{4}}{6 \pi t_{0}^{2} m^{2} c^{4}\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \Gamma^{2}\right)}
\end{aligned}
$$

3. (a) Take $\psi=1+m \cos (2 \pi x / d)$

$$
\begin{aligned}
& \mathcal{F}(\psi)=F(1)+m \exists\left(\cos \frac{2 \pi x}{d}\right) \quad \exists=\text { F.T. } \\
& \begin{aligned}
F(1) & =\int_{-\infty}^{\infty} e^{-i k_{x} x} d x=2 \pi \delta\left(k_{x}\right) \quad k_{x}=k \sin \theta \\
F\left(\cos \frac{2 \pi x}{\alpha}\right) & =\int_{-\omega}^{\infty} \frac{1}{2}\left(e^{2 \pi i x / \alpha}+e^{-2 \pi i x / \alpha}\right) e^{-i k_{x} x} d x \\
& =\pi \delta\left(k_{x}-\frac{2 \pi}{\alpha}\right)+\pi \delta\left(k_{x}+\frac{2 \pi}{d}\right)
\end{aligned}
\end{aligned}
$$

(b)

$$
\begin{array}{rlr}
\text { Take } \psi^{\prime} & =1 & |x|<D / 2 \\
& =0 & |x|>D / 2 \\
F\left(\psi^{\prime}\right) & =\int_{-D / 2}^{D / 2} e^{-i k_{x} x} d x \\
& =-\frac{1}{i k_{x}}\left[e^{-i k_{x} D / 2}-e^{i k D / 2}\right] \\
& =2\left(\frac{\sin k_{x} D / 2}{k_{x}}\right)
\end{array}
$$

Then for grating illuminetion = $\psi \psi^{\prime}$ (multiplicelian) F.T. $=\left(F(1)+F\left(\cos \frac{2 \pi x}{d}\right)\right)^{\cap} F\left(\psi^{\prime}\right)$ using Emv, thesem

$$
=\left(2 \pi \delta\left(k_{x}\right)+\pi \delta\left(k_{x}-\frac{2 \pi}{d}\right)+\pi \delta\left(k_{x}+\frac{2 \pi}{d}\right)\right) \cap \frac{2 \sin \left(k_{k} D / 2\right)}{k_{x}}
$$

 $\sim \ln$

Now add the rear

$$
\psi^{\prime \prime}=(1-2|x| / D)
$$

This is the seff-connveurion of $\psi^{\prime \prime \prime}=1 \quad|x|<D / 4$

$$
=0 \quad|x|>D / 4
$$

$$
\begin{aligned}
& \exists\left(\psi^{\prime \prime \prime}\right)=\frac{2 \sin \left(k_{x} D / 4\right)}{k_{x}} \\
& \exists\left(\psi^{\prime \prime}\right)=\exists\left(\psi^{\prime \prime \prime}\right) \times F\left(\psi^{\prime \prime \prime}\right) \text { as } \psi^{\prime \prime}: \psi^{\prime \prime \prime} \cap \psi^{\prime \prime \prime} \\
& \text { So } F\left(\psi^{\prime \prime}\right)=\frac{4 \sin ^{2}\left(k_{x} D / 4\right)}{k_{x}^{2}}
\end{aligned}
$$

No u the new illumination is $\psi \times \psi^{\prime} \times \psi^{\prime \prime}$

$$
\text { So the F.T. is } F(\psi)^{\wedge} \mathcal{F}\left(\psi^{\prime}\right)^{\wedge} \mathcal{F}\left(\psi^{\prime \prime}\right)
$$

$$
=\left(2 \pi \delta\left(k_{x}\right)+\pi \delta\left(k_{x}-\frac{2 \pi}{d}\right)+\pi \delta\left(k_{x}+\frac{2 \pi}{d}\right)\right)^{n} \cap \frac{2 \sin \left(k_{x} D / 2\right)}{k_{x}} \cap \frac{4 \sin ^{2}\left(k_{x} D / 4\right)}{k_{x}^{2}}
$$

Power α all of this squared.
4. Take single aparlure, sidee

$$
\begin{aligned}
& \psi=1 \\
& \begin{aligned}
& -a / 2 \leqslant x \leqslant a / 2 \\
& =\int_{-a / 2}^{a / 2} e^{-i k_{x} x} d x \\
& =-\frac{1}{i k_{x}}\left[e^{-i k_{x} a / 2}-e^{i k_{x} a / 2}\right] \\
& =2 \frac{\sin \left(k_{x} a / 2\right)}{k_{x}}
\end{aligned}
\end{aligned}
$$

$$
k_{x}=k \sin \theta \cos \phi
$$

Now consider the array byont fincrion $\psi^{\prime}=\sum_{n=0}^{N-1} \delta(x-n D)$

$$
\begin{aligned}
F\left(\psi^{\prime}\right) & =\int_{-\infty}^{\infty} \sum \delta(x-n D) e^{-i k_{x} x} d x \\
& =\sum_{n=0}^{N-1} e^{-i k_{x} n D} \\
& =\sum_{n=0}^{N=1} j_{0}^{n} \quad \zeta=e^{-i k_{x} D D} \\
& =\frac{\zeta^{N}-1}{\zeta-1}=\frac{e^{-i k_{x} N D}-1}{e^{-i k_{x} D}-1}=\frac{e^{i k_{x} N D / 2} \cdot \sin \left(k_{x} N D\right)}{e^{i k_{x} D} \cdot \sin \left(k_{x} D\right)}
\end{aligned}
$$

Illuminerion is $\psi^{\cap} \psi^{\prime}$
Fraunhefer Petters a $\left|F^{2}\left(\psi^{\prime} \psi^{\prime}\right)\right|=\left|F^{2}(\psi)\right| \cdot\left|\mathcal{F}^{2}\left(\psi^{\prime}\right)\right|$

$$
\alpha \frac{\sin ^{2}\left(k_{x} a / 2\right)}{k_{x}^{2}} \cdot \frac{\sin ^{2}\left(k_{x} N D\right)}{\sin ^{2}\left(k_{x} D\right)}
$$

Restrictions

$$
\begin{gathered}
\psi_{p}=\frac{1}{4 \pi} \oiint\left(\psi \nabla\left(\frac{e^{i k r}}{r}\right)-\frac{e^{i k r}}{r} \nabla \psi\right) \cdot d S \\
\downarrow \\
\iint_{A}\left(\psi \nabla\left(\frac{e^{i k r}}{r}\right)-\frac{e^{i k r}}{r} \nabla \psi\right) \cdot d S \\
\nabla\left(\frac{e^{i k r}}{r}\right)=\frac{e^{i k r}}{r}\left(i k-\frac{1}{r}\right) \hat{\sim} \\
\nabla \psi \underset{\sim}{\sim}=\hat{K} \quad d \underset{\sim}{s}=\underset{\sim}{k} \cdot d x d y
\end{gathered}
$$

$\binom{$ Kirchof }{ Helmholz }
if $\psi a D Q$
$\rightarrow 0$ on ETannili abarme.
(2) Neglecr $1 / 5$ term in (ik-1/r)
(3) Negleet variation of $\hat{\sim} \cdot \hat{k}$, pht $=\cos \theta$
(4) Neqleer variation of $1 / \pi$

Then $\psi_{p}=-\frac{i k e^{i k z}}{4 \pi R} \iint e^{i k \Delta}(1+\cos \theta) d x d y$
where $r^{2}=\left(x-x_{A}\right)^{2}+\left(y-y_{A}\right)^{2}+z^{2}$

$$
=z^{2}\left(1+\left(\frac{x-x_{A}}{2}\right)^{2}+\left(\frac{y-y_{A}}{z}\right)^{2}\right)
$$

$$
r \rightarrow z+\frac{\left(x-x_{A}\right)^{2}}{2 z}+\frac{\left(y-y_{A}\right)^{2}}{2 z}
$$

$$
\rightarrow z+\Delta
$$

(5) Take ont $(1+\cos \theta)$ oblianity (neglect is variation in integral)

$$
\psi_{p}=\frac{-i k e^{i k z}(1+\cos \theta)}{4 \pi R} \iint e^{i k\left(\frac{\left(x-x_{A}\right)^{2}}{2 z}+\frac{(y \cdot y A)^{2}}{2 z}\right)} d x d y
$$

This \rightarrow a F.T. inregred iff. neglect $\frac{x_{A}^{2}}{2 z}, y_{A}^{2} / 2 z, l, C, z \gg \frac{N^{2} D^{2}}{\lambda}$ $\frac{x^{2}}{2 z}, y^{2} / 2 z$, lie. neer exis.
5. This system has no net electric dipde or magn. Dipsle int Hence must calculate quadmpole

$$
\begin{aligned}
& a(r f, w)=\frac{\mu_{0}}{4 \pi} \cdot \frac{e^{i k R_{0}}}{R_{0}} \cdot[-i k \dot{\sim} / 6] \\
& \text { i.e. } B=\nabla_{f} \times \frac{\mu_{0}}{4 \pi} \cdot \frac{e^{i k r_{f}}}{r_{f}} \cdot(-i k) \cdot \frac{1}{6} \underset{\sim}{d} \\
& \text { (cf.el.dipole } \left.\quad-\frac{i k \dot{D}}{6} \longleftrightarrow \dot{d}\right)
\end{aligned}
$$

$$
\text { For relative terms } \nabla f \equiv \frac{i k e^{i k r s}}{r_{f}} \approx
$$

$$
\text { Hence }{\underset{\sim}{r r e d}}^{B_{2}}=\frac{k^{2} \mu_{0}}{4 \pi} \cdot \frac{1}{6} \cdot \frac{e^{i k / f f}}{k_{f}} \cdot(n \times i)
$$

$$
\left(E_{\mathrm{K}} \mathrm{~d}=\left(\frac{C}{-i k}\right) D_{f} \times \frac{B}{2}=-\frac{k^{2}}{4 \pi \epsilon_{\infty}} \cdot \frac{1}{6} \cdot \frac{e^{i k r_{f}}}{r_{f}}\left(n_{n} \times\left(n_{x} \times \dot{D}\right)\right)\right)
$$

$\frac{d P(\theta)}{d \Omega}=\frac{1}{2} \mu_{0} c|k|^{2}=\frac{1}{2} \mu_{0} c \cdot \frac{k^{4}}{36 \times 16 \pi^{2}} \cdot k^{2} c^{2}|n \times D|^{2}$

$$
=\frac{c k^{6}}{\| 52 \pi^{2} \epsilon_{0}}|n \times D|^{2}
$$

$$
\prod_{a}^{i_{i}^{x_{3}}}{ }^{x^{2}} \quad D_{\alpha \beta}=\sum_{i}\left(3 x_{\alpha} x_{\beta}-r_{i}^{2} \delta_{\alpha \beta}\right) q_{i}
$$

$\alpha \neq \beta \quad D_{\alpha \beta}=0$ as $x_{1}=x_{2}=0$ always

$$
\begin{aligned}
& \alpha=\beta=1\left|D_{11}\right| \\
& 2\left|D_{22}\right|=-a^{2} Q-a^{2} Q=-2 a^{2} Q-a^{2} Q=-2 a^{2} Q \\
& 3\left|D_{33}\right|=3 a^{2} Q-a^{2} Q+3 a^{2} Q-a^{2} Q=4 a^{2} Q
\end{aligned}
$$

$$
\begin{aligned}
& \text { So quaimpisle leusor } \underset{\sim}{D}=2 Q\left(\begin{array}{ccc}
-a^{2} & 0 & 0 \\
0 & -a^{2} & 0 \\
0 & 0 & 2 a^{2}
\end{array}\right) e^{i \omega t} \\
& \underset{\sim}{D}=\underset{\sim}{D} n=\left(-2 Q a^{2} n_{x} i-2 Q a^{2} n_{y} \dot{z}+4 Q a^{2} n_{z} k\right) e^{i \omega t} \\
& \text { Herce }|n \times D|=\left|\begin{array}{ccc}
i & j & k \\
n_{x} & n_{y} & n_{z} \\
-2 Q a^{2} n_{x} & -2 Q a^{2} n_{y} & 4 Q a^{2} n_{z}
\end{array}\right| \\
& =6 Q a^{2} n_{y} n_{z} \underset{\sim}{i}+6 Q a^{2} n_{x} n_{z} \underset{\sim}{j} \\
& |n \times D|^{2}=\left(6 Q a^{2}\right)^{2}\left(n_{y}^{2} n_{z}^{2}+n_{x}^{2} n_{z}^{2}\right) \\
& =36 Q^{2} a^{4} n_{z}^{2}\left(1-n_{z}^{2}\right)
\end{aligned}
$$

$l_{2}=\sin \theta$ shere θ is the arple away from the x_{3}. axis
Herce $\frac{d P(\theta)}{d \Omega}=\frac{c k^{6}}{152 \pi^{2} \sigma_{0}} \cdot 36 Q^{2} a^{4} \sin ^{2} \theta \cos ^{2} \theta$

$$
=\frac{c k^{6} Q^{2} a^{4} \sin ^{2} \theta \cos ^{2} \theta}{32 \pi^{2} \varepsilon_{0}}
$$

Dipole moment

$$
\begin{aligned}
\underset{\sim}{d} & =q_{1} x_{1}+q_{2} x_{2} \\
& =\left(\frac{q_{1} m_{2}-q_{2} m_{1}}{m_{1}+m_{2}}\right) \pm \\
& =\mu\left(\frac{q_{1}}{m_{1}}-\frac{q_{2}}{m_{2}}\right) \pm=\mu \Delta g_{ \pm}
\end{aligned}
$$

$$
\begin{array}{ll}
r=r_{1}+r_{2} & \\
m_{1} r_{1}=m_{2} r_{2} & \\
r_{1}=\frac{m_{2} r}{m_{1}+m_{2}} & r_{2}=\frac{m_{1} r}{m_{1}+m_{2}}
\end{array}
$$

Hence by harmon's formula: $\langle p\rangle=\frac{\ddot{\alpha}^{2}}{6 \pi \epsilon_{0} c^{3}}=\frac{\mu^{2} \Delta g^{2} \dot{r}^{2}}{6 \pi \epsilon_{0} c^{3}}$ gives dipole radiation.
Under Coulomb interaction

$$
\begin{aligned}
& \mu \ddot{r}=+\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}}, \ddot{r}=+\alpha / \mu r^{2} \\
& \langle p\rangle=\frac{\mu^{2} \Delta g^{2} \alpha^{2}}{6 \pi \epsilon_{0} c^{3} \mu^{2} r^{4}}=\frac{\Delta g^{2} \alpha^{2}}{6 \pi \epsilon_{0} c^{3} r^{4}}
\end{aligned}
$$

Then

$$
\langle p\rangle=\frac{\Delta g^{2} \alpha^{2}}{6 \pi \epsilon_{0} c^{3} r^{4}}
$$

Now - we want total radiation i.e. $\int\langle p\rangle d t=\int \frac{\langle p\rangle}{\dot{r}} \cdot d r$
Assume symmetric, ie. $\int_{-\infty}^{0}=\int_{0}^{\infty}$. (neglect energy losses by vediation)

$$
\begin{aligned}
& \ddot{r}=\frac{\alpha}{\mu r^{2}}=\dot{r} \frac{d \dot{r}}{d r} \\
& \frac{1}{2} \dot{r}^{2}=\int_{\infty}^{r} \ddot{r} d r++_{2}^{1} v_{0}^{2} \\
& \frac{1}{2}\left(\dot{r}^{2}-v_{0}^{2}\right)=\int_{\infty}^{r} \frac{\alpha}{\mu r^{2}} d r=-\frac{\alpha}{\mu r} \\
& \dot{r}^{2}=v_{0}^{2}-\frac{2 \alpha}{\mu r}
\end{aligned}
$$

$r=r_{\text {min }}$ whet $i^{2}=0 \quad v_{0}^{2}=\frac{2 \alpha}{\mu r_{\text {min }}}, \quad r_{\text {min }}=\frac{2 \alpha}{\mu v_{0}^{2}}$

$$
\begin{aligned}
\Delta \varepsilon & =2 \int_{\infty}^{r_{\min }} \frac{\Delta g^{2} \alpha^{2}}{6 \pi \epsilon_{0} c^{3} r^{4}} \cdot \frac{1}{\sqrt{V_{0}^{2}-\frac{2 \alpha}{\mu r}}} d r \\
& =\frac{2 \cdot \Delta g^{2} \alpha^{2}}{6 \pi \epsilon_{0} c^{3}} \int_{\infty}^{r_{m i}} \frac{1}{r^{4}} \cdot \frac{1}{\sqrt{V_{0}^{2}-2 \alpha / \mu r}} d r
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Let } x^{2}=\frac{2 \alpha}{\mu r} \quad \text { i.e. } r=\frac{2 \alpha}{\mu x^{2}} & r^{4}=\frac{16 \alpha^{4}}{\mu^{4} x^{8}} \quad \frac{1}{r^{4}}=\frac{\mu^{4} x^{8}}{16 \alpha^{4}} \\
2 x d x=-\frac{2 \alpha}{\mu r^{2}} d r \\
2 x d x=-\frac{1 \alpha}{\mu} \cdot \frac{\mu^{2} x^{4}}{4 \alpha^{2}} \cdot d r & x_{\text {mex }}^{2}=\frac{2 \alpha}{\mu r_{\text {min }}}=\frac{2 \alpha \mu v_{0}^{2}}{\mu \cdot 2 \alpha}=v_{0}^{2} \\
\frac{4 \alpha \mu x d x}{2 / \mu^{2} x^{4}}=-d r & \int x^{n} \rightarrow \frac{1}{n+x^{n+1}} \\
-\frac{4 \alpha}{\mu x^{3}} d x=d r
\end{array}
$$

So $\int=\int_{V_{0}}^{\infty} \frac{\mu^{4} x^{8}}{16 \alpha^{4}} \cdot \frac{4 \alpha}{\mu x^{3}} \cdot \frac{1}{\sqrt{V_{0}^{2}-x^{2}}} d x$

$$
\begin{aligned}
& =\int_{V_{0}}^{0} \frac{\mu^{3}}{4 \alpha^{3}} \cdot \frac{x^{5}}{\sqrt{V_{0}^{2}-x^{2}}} d x \\
& \frac{2 \Delta g^{2} \alpha^{2}}{6 \pi \epsilon_{0} c^{3}} \cdot \frac{\mu^{3}}{4 \alpha^{3}} \cdot \int_{V_{0}}^{0} \frac{x^{5}}{\sqrt{V_{0}^{2}-x^{2}}} d x \\
& \frac{2 \Delta g^{2} \alpha^{2} \mu^{3}}{36 \pi \epsilon_{0} c^{3} \cdot 4 \alpha^{3}} \cdot\left[\frac{2}{15} v_{0}^{2} \quad \frac{2}{45} \frac{\Delta g^{2} \epsilon^{2} \mu^{3} v_{0}^{5}}{\pi \epsilon_{0}^{3} \alpha} \quad \alpha=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}}\right. \\
& \frac{16}{24 \times 15}=\frac{4}{45} . \\
& =\quad \frac{8}{45} \frac{\Delta g^{2} \mu^{3} v_{0}^{5}}{c^{3}}\left(\frac{1}{q_{1} q_{2}}\right) r
\end{aligned}
$$

