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The Bohr Atom

In the old particle description the model of the atom would be given
by the statement of the conservation of total energy. For the coulomb

force holding the atom together

the basic picture is that of total energy being conserved; kept constant.
Energy is stored in the system of the electron—-nucleus or atom. The picture
that the wave aspect must retain, as it is the barest minimum statement we
can possibly make, is the storage of energy in the atom. But of course this
is no great problem, as we know that waves can store energy - we have seen

this done in standing waves! We can allow both pictures to describe the

situation if we allow the electron to be some sort of wave which, while the
electron circles (? old picture) the nucleus, has a 'wavelength' that
exactly fits into the orbit length so that in successive orbits of the
nucleus the "wave" superimposes with the wave of previous orbits to set up a

standing wave, and permanently store the energy which the electron possesses.

If the "wavelength' doesn't have the right relation to the orbit (i.e. that

the circumference is an integral number of wavelengths long) then successive
waves would quite quickly add up in such a way that they will cancel, and no
energy could be stored, so that the two pictures couldn't be consistent with

one another, which therefore must not happen. If there is no standing wave
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(wave language) storing energy there cannot be an electron orbiting the
nucleus (particle language).

In order to make a more quantitative combined picture, we must find
some relation of particle "wavelength" and energy. We must at least have
some rudimentary idea of what a particle "wavelength" is. 1In fact there
existed a relation in the known properties of radiation which could be
thought of as connecting these two seemingly unrelated properties. This
relation was used by De Broglie to correct the two aspects together for
particles in a very intuitive way strongly reminiscent of the 'generation"
of Newton's third law. Both were obtained by an appeal to symmetry.

It had been known (deduced from the basic electric force law) that
electromagnetic waves carry momentum. In fact the relation between the
energy stored in an electromagnetic wave and its momentum is

6 Ll m et B speed of light
De Broglie was aware of the photoeffect, and its statement that
E = hv
The combination of these two statements leads to the conclusion that
hv = momentum x c

for light, and through the relation of wavelength to frequency

h
R' = momentum.

Now; this is a relation of a wave property (wavelength) to a particle property
(momentum). True, it is only correct as obtained, for light. But why should
it only be true for light? Light is a wave that acts like a particle at certain
times. What is the difference between this and a particle that acts as a wave
at times? Why can't the relation be equally true for waves and for particles?

After all, there is nothing in the formula which says that you must start
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looking at the equation on the side describing the wave property (wavelength)
and end up finding out the particle property (momentum). Surely you can
equally correctly start with a particle aspect (momentum) and transform it
into a wave property (wavelength). Therefore this should be a true relation
for anything which has both a wave and a particle aspect to it.

If this is so, then there is a restriction put on the possible speeds
that the electron can have as it circles the nucleus. Not only must it con-
serve energy, but it must be in a standing wave, which means that not all
energies will be possible, only those which correspond to the right electron
momentum for the generation of the standing wave.

This basic picture was worked out quantitatively by N. Bohr, although he
didn't have the benefit of the de Broglie argument, as it had not yet been
thought of. He had to "cheat" and used the same formula by seeing that it was
necessary to make things work. His basic picture was to try to fit in both
the classical energy equation for an atom and the standing wave condition.

When he did this, he arrived at a solution for the total energy of the atom

that gave

basic constant (scale factor)
TE = -

2|

where N (called a quantum number) could be any whole number (i.e. 1, 2, 3, 4
«ee.. etc.) from 1 to 8. In effect the number N, or the quantum number
(quantum is Latin for low mid) tells us how much energy there is. These
energies satisfy the standing wave requirement, and in terms of our previous

picture, all the possible energies a bound atom can have are
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Only these energies for the atom are allowed by his solution: no others can
exist. From the form of the equation he arrived at we can see that for very
small numbers N, the allowed energies are widely separated, but have relative-
ly large (negative) values. (The negative value simply means that the electron
cannot escape from the atom.) For large values of N, both the separation
between allowed energies and the energies themselves are very small. Also,
there is no larger (negative) energy than that for N = 1.

Let's see physically what this picture implies. To do this imagine we
are in the process of putting together a hydrogen atom. We will start with
an electron orbiting a proton at an almost infinite separation, but the
electron weakly attracted to the proton. As the electron is accelerating
around the proton it will be attracted to it, accelerate, and move closer to
the proton giving off radiation (this is what we said would happen before).

Now we say that the electron if initially in a state of motion described by
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exist. From the form of the equation he arrived at we can see that for very
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are in the process of putting together a hydrogen atom. We will start with
an electron orbiting a proton at an almost infinite separation, but the
electron weakly attracted to the proton. As the electron is accelerating
around the proton it will be attracted to it, accelerate, and move closer to
the proton giving off radiation (this is what we said would happen before).

Now we say that the electron if initially in a state of motion described by
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TE where TE = ﬁyg-and N is very large. When it radiates off a small amount

of energy it becomes more tightly bound, and it moves immediately into a

different state of motion, described by TE! = ﬁ%—z where Nl = N - 1, or

maybe N - 2, etc. These differences are very small, so that a continuous
charge, continuous variation is effectively indistinguishable from our
standing wave condition (i.e. N must be some integer). In fact the standing
wave requirement puts no limitation on the possible energy of the atom at
first, when N is very large. Now, however, as the electron continues to

move towards the proton, the gaps between the allowed energy values becomes
appreciable, and it is no longer possible for the electron to move con-
tinuously from one state (of motion) to the other. Now it is either in one
state or the other, and not in between, because of our standing wave require-
ment. When it changes from one state to the other, it must do so almost

instantaneously and in that time it has to get rid of the difference in

energy between the two states — by emitting a sudden burst of radiation -
sometimes called a photon. This means that the large energy jumps, the

radiation ceases to be continuous but is emitted at discreet timés; the

energy of these jumps is relatively large, and so (because E = hv) should
occur at high frequencies. Also we notice that there will become increasing-
ly fewer jumps emissions of radiation possible at the high frequency and of
the spectrum, because there are fewer allowed states, separated by large
energy differences. Finally, we see that the electron will find itself in

the state with N = 1. When it gets there it can no longer emit any radiation,

as there is no other state with lower total energy that it can get tol It
cannot radiate, therefore it has to stay in that state of motion forever.

It is stable!
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Let's see now if this new picture helps us out with our previous
difficulties. First, the ultraviolet catastophe; here the classical
picture correctly predicted the low frequency emission of radiation, and
the Bohr picture leaves that unaffected. However Bohr predicts that, as

there is a minimum total energy allowed for an atom, there is a maximum

total energy thaf is possible to emit by radiation, hence an upper limit
to the frequency spectrum. Of course this is what is observed. The
Ultraviolet Catastrophe is resolved!

The radiation collapse of the atom is also solved. Again, we see that
the classical picture of a spiralling, radiating atom is correct - at first,
but finally the wave character of the electron takes over, and does not
allow the electron to continue getting closer to the proton after it has
reached the minimum standing wave conditionm.

The photoeffect, as we by now might guess, is also explained. At high
frequencies, or large energy charges for the electron, the process of
radiation is restricted to very short time spans since the electron cannot
spend time "between'" the allowed states, so that the radiation occurs in
bursts - as was found necessary to explain the photoeffect. In additionm,
we can see how there should exist a definite threshold frequency (energy)
for the ejection of electrons, since the electron, when it is in its stable
energy state is bound by a single amount, and if the frequency (energy) of
the radiation is not high enough, it cannot provide the electron with enough
to become unbound.

Of course we cannot claim to have explained the electron scattering
experiment, since we must admit that we have used it to obtain all the other

explanations.
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This new picture is capable of more than just a qualitative description
of these problems. We remember that Planck, by using as a starting assumption
the features we have incorporated into our picture, was able to obtain a
quantitative agreement between the predicted and observed blackbody radiation
spectrum. Also, Bohr was able to make numerical predictions about the
radiation spectrum of hydrogen atoms (since the term Eo consisted entirely
of basic known quantities like the electron charge and mass) and the total
energy by which a stable hydrogen atom is bound together. These predictions
were found to be in very close agreement with the observed quantities.

In fact his description of a series of discreet frequencies of emitted
radiation give us the reason that we are able to identify clouds of luminescent
hydrogen in space. It is because of this generally discreet nature of the
emission of radiation from all atoms that we are able to ascertain the

presence of various elements in the heavens!



