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CHAPTER TWO: Observable Properties of World-Models - Theory

2.1 The Red Shift Relation

In order to relate observable quantities to the functional form of the
cosmological scale factor R(t), we need to analyse the propagation of light
through the model Universe. While the main relationships can be obtained
within the neo-Newtonian framework, they can be found more readily fram the GR
formulation (which is better suited to the description of photon propagation).
The starting-point is the fact that photons travel on null geodesics such that
the events along the path of a photon through the model satisfy

7
which for radially-travelling photons in the Robertson-Walker metric (J=9)

reduces to
2at2 =R2u)§dﬂ/urwﬂ)f

We will normally be interested in radially-travelling photons because we can
choose either the observer or the emitter of the radiation to be at the origin
of the (7,©,%) coordinates., The above equation can be rewritten in the more
useful form

(2.1) cdt/R(t) = (+/-)AT/Y(1-k2)

which relates the time interval dt to the radial coordinate interval dv-along a
section of a photon's path at coordinates (T,t). The (+) sign will apply for
photons which are travelling outwards from the origin of coordinates, the (=)
sign for photons which are travelling inwards. If we integrate (2.1) along the
finite path from a point of emission ¥ at emission time tp to a point of
cbservation Ty at observation time ty we find that

t ~To
X ggg _<+> aa
R(t) \- j«(l—k—v:-’)
te >

Now consider applying this relation to the path of a photon emitted from a
source at coordinate Uy at time t; and cbserved by an observer at the
origin (0=0) at the later time to. In this case we are dealing with an
inwards-propagating photon, so the (-) sign applies in (2.1) and




R(t) j«ﬁf@-‘)

The integral on the right is just Sk(Yg) fram Section 1.2.5, which is a
constant for a given source of radiation (remember that Up is the constant
co-moving coordinate of a given FO, galaxy, etc.). This means that a second
photon, emitted from the same source at time (tp+Atp) and received by the
same observer at time (tO+Ato) will also satisfy

Cordte 0
adt dagc
J RO T )Yk
t"z_#btﬁ G‘E
where the right hand side has the same value Sy (Tg). This requires that
rtg to‘*&to

(cat _ ([ _cat
3 R(t) J R(t)
Co
. (ear | edg oAy
J R(t) R(ty)  R(tp)

Ce

which in turn means that

(2.2 Jp/R(tp) = Ag/R(tp)

Now if the source is radiating a monochromatic frequency Vg, the number
of wave crests emitted in time Aty will be N = Vpitg. As this same
nunber N of wave crests is received by the observer in the time Ato, the wave
frequency perceived by the observer must be

WV

0

]

N/Otg = Vp(btp/dty)

Vg R(tp) /R(tg)

This gives an expression for the Doppler Effect in the model Universe,
which can be written

(2.3) (1+z) = \)E/\')O = R(tg) /R(tg)

where z is the usual red shift parameter of cbservaticnal astronomy. The red
shift is seen to be a measure of the relative expansion of the Universe between
the time of reception of a photon by the observer and the time of its emission
by its source, so that



z = [R(tg)/R(tp) - 1 = AR(to,tp) /R(tp)

For times of emission and reception of the radiation that are sufficiently
close, i.e. for photons received fram 'local' sources, we can write

R(tg) = R(tg) - R(tg)dt + R(tg)at%/2 + O(AL3)

where At = (to~tg) is a small time interval whose higher powers may be
neglected. Equation (2,3) could then be written

(1+2)7L = R(tp) /R(ty) = 1 - £(tg) At =3qof2 (t)At2 + O(At3)

where gy is the value of the deceleration parameter (Section 1.3.5) at time
top and £(t) is the scalar function introduced in Section 1.2.2, Equation
(1.1). Inverting this expansion gives

1+2z=1+ f(tg)At + £2(tg)At2(1 + qp/2) + 0(Atd)

so that in the limit z<<1,

(2.4) z = £(tg)dt + £2(tg) (1 + qy/2At2

This is a useful expansion when making 'local' approximations, e.g. when

deriving the 'Hubble relations' as in Section 2.5 below.

2.2 Photometric Distances

Photometric distances are the distances that we estimate for objects by
assuning them to be 'standard candles', i.e. dbjects of standard (known)
luninosity. If we measure the apparent brightness B (energy falling on unit
area of a detector in unit time in a specified instrumental bandwidth) of an
object of standard luminosity L, we infer a photametric distance D from

(2.5) B = L/4mD?

i.e, D is the distance estimated fram measured B and assumed L on the
assumption of an inverse square law of light propagation and Euclidean
geanetry. ToO relate measurable photametr ic distances to the parameters of
model Universes, we need to consider several cases of practical interest.



2.2.1 Bolometric photometry

Consider first the idealised case in which the observer's detector is
presuned to respond equally to all wavelengths in the electromagnetic spectrum
- it is an ideal bolometer. Consider a source with a bolametric luminosity L,
at coordinate ( in the model Universe; it emits radiation at time tp which
is cbserved at the origin (=0 at time ty. Three factors now enter into the
camputation of the apparent brightness B received by the observer:

1. The area dilution factor. At the time of observation, the
radiation from the source is distributed uniformly over a sphere, centred on
the source, whose proper area can be found by integrating over all © and ¢>
using the Robertsom-Walker metric (i.b} - this area is A = 47m.R% (to) (TE,
and the power density at the observer due to purely geometrical dilution is
L/A. In addition we must consider two different effects of the red shift:

2. The photon energy loss factor. Every photon emitted by the source
with energy E = hvp is received by the observer with energy E' = hvy, so
the total energy received by the observer is less than that emitted by the
source by a factor f = VO/V (1+z)

3. The photon rate factor, N photons emitted in a time interval AtE
will be received over a longer time interval Aty = Atp(l+z), so the
rate of photon reception is decreased by a factor £, = AtE/LtO =
(1+2z) -1, Note that this rate factor multiplies the photon energy loss factor
fe. The rate of energy reception fram the source per unit area of a
bolanetric detector is therefore:

B(tg) = fe.fp.L/ATTER (tg)

i

L/ (4TTER? ( tg) (1+2) )

We can therefore write the bolometric distance Dy in terms of (I‘E and

R(tg) :

(2.6) Dy (tg = TgR(tg) (1+2)

To make this an explicit D-z relationship, we need to put in the details of a
particular model; before doing this, consider other, more practical, forms for
the photametric distance.

2.2.2 Finite-bandwidth photometry

In practice we will use a radiation detector with a band-limited
instrumental response I (V) , which will be as constant as possible between
freguencies \)Ol and Voo, and as nearly zero as possible at VYo < ¥Yo1
and Vg > Vgo. In this case the area dilution factor and the photon rate
factor f. enter into the formulation as before, but the photon energy factor



fo is replaced by the effect of the redshift in moving different parts of the
source's radiation spectrum through the instrumental bandpass. For a nearby
(zero-red-shift) source the total luminosity in the instrumental bandpass would
be
Vo
L= j I(Vo) P (Vo) dvy
Vou
where P(V) is the spectral power emitted by the source (luminosity per unit
frequency width). For a source at a redshift z however, the radiation received |,
at frequency vV was emitted at frequency Vg5(1l+z), so the effective
luninosity of the source in the detector's bandpass is
: voy
L'= S I (Vo) P(Vo(142))dVg = L.Kp p(2) . (142) 71
Vol ‘
Here the correction factor K; p(z) depends on the details of the source
spectrum and on the shape of the instrumental response curve I(Vp), as well
as on the red shift z of the source. 1t may be greater than, or less than,
unity, depending on the distribution of energy in the source spectrum P(V).
These 'K-corrections' therefore have to be determined for particular
instruments and particular source spectra, e.g. for the standard photometric U,
B, V filters and for elliptical galaxy colours. When the appropriate
K-corrections are known, distances D¢ estimated photametrically through
finite-bandwidth instruments can be converted to equivalent bolometric
distances Dy via

(2.7 D, = Dp.yKp,p(2)

The determination of the K-corrections is particularly difficult for
distant (high-red-shift) objects, as camputation of the K-correction in the
visible region of the spectrum may require knowledge of the ultraviolet spectra
of nearby objects of the same type. Until the advent of satellite
bservatories, such K-corrections could not be based on observation, but were
estimated fram theoretical models.

For radio sources, the situation is often simpler. Most radio
measurements are made with instruments whose bandwidths are narrow compared
with the observing frequency (in order to escape the effects of man-made
signals in the radio spectrum) , and many radio galaxies and quasars have radio
spectra which can be approximated over a wide freguency range by a power law

P(v) = ppv ™

where ® is called the spectral index. In this case we can approximate I (V)
with the Dirac delta-function at Vj; and put



Ky,p(2) = (L+z) Va9 = (1+z) 17

2.3 Diametric Distances

Diametric distances are the distances that we estimate for objects by
assuning them to be 'rigid rods', i.e. cbjects of standard (known) linear size.
If we measure the angular diameter A® (radians) of an object of known linear
size s transverse to the line of sight, we infer a diametric distance d from

(2.8) LB =s/d

The angle A% measures the angle between the paths of two photons which
travelled radially towards the observer from the two extreme ends of the
source, both setting out at the same time of emission tp. From the metric
(1.9) we see that the element of proper length perpendicular to the radial
direction is

ak2 = R2(t)72 (d6% + sin6dg?)

We can eliminate the term involving sin® by choosing our angular coordinates
such that the source is at ©=0, It follows that the angle M® between two
radially-travelling photons leaving the ends of an object of finite length s
transverse to the radial direction at the same time tp is

5B = s/TR(tg)

As this angle between the radial photons is preserved as they propagate through
the model Universe, we infer that the diametric distance

2.3.1 The relation between bolometric and diametric distances

Comparison of our results (2.6) and (2.9) shows that the ratio Dp/d of
the bolametric and diametric distances for the same object is

(2.10) Dp/d = TpR(tg) (1+2) /GR(tg) = (1+2)2

regardless of the functional form of R(t). There is therefore no

infcrmation about the cosmological model itself (i.e., about R(t)) to be
obtained by comparing bolometric and diametric distances for a given class of



cbject as functions of red shift z, Note also that the ratio of Dp/d becomes
large for objects in the presently-known range of red shifts for quasars (z up
to 3.5), so that the differences between photcmetric and diametric distance
estimates cannot be ignored for work on the more distant systems accessible to
modern telesccpes.

2.4 Surface Brightness Relations

2.4.1 Bolometric surface brightness

The surface brightness of an image is its apparent brightness per unit
solid angle, i.e. the surface brightness F(V) at a given observing freguency
Y is
(2.11) F(Vg) = B(Vg)/Su
where Ju is the solid angle subtended at the observer by the source. The
bolanetric surface brightness is F = fF(V)d\) , which for sources whose angular
size is independent of freguency is SB(v)d\)/u’L. For a black-body source, the
bolametric surface brightness F is proportional to T where T is the
effective temperature of the black-body image. For a circular source of proper
diameter s we have
Ju = 'nsz/chrd2 and B = L/41TD75
so that
F = (L/1s%).(d/Dp) %, i.e.

(2.12) Fee (l4z)™4
which for a black-body image implies that the effective temperature
(2.13) T (1+z)71

Note that this bolcametric black-body temperature relation could be written

(2.14)  T(to)/T(tp) = R(tp R(tg)




2.4.2 The spectrum of a distant black-body source

Bguation (2.13) shows that the temperature T estimated bolometrically
from a black-body image falls off as (l+z)'1. It is interesting to examine
the detailed behaviour of the spectrum of a black body in the model Universe.
To do this, imagine that we have a strictly monochramatic detector, so that
I(vp) is the Dirac delta function at V5 in the notation of Section 2.2.2.

In that case the K-correction is just

Kp(2) = (1+2)P(Vg(1+2)) /P(Vg) = (1+2)P(Vg) /P (V()
so that the apparent brightness at frequency \{; in the observed spectrum is
B(Vg) = P(Vp) /4TTER? (tg) (1+2)

fran Section 2.2.2. We can therefore write the observed surface brightness at
frequency V

F(Vg) = B(vg)/su

) P(Vp) ATTERZ(tp)
4110%R2(t0) (1+z) .1rsﬁ2

in the notation of Section 2.3. This simplifies to
(2.15) F(Vg) = F(Vp).(l+z) 73

Now for a black-body source at a temperature Tg, F(Vy) is the emitted
Planck spectrum

F(vp) = 2hvi/c2jexp(hvi/KTg) -1}

so that the observed surface brightness spectrum is, by (2.14)

F(Vg) = 2n(Vp/(1+2)) 3/c?dexp(hvy/KTg) -1}

2hvg/c2{exp (v (1+2) /KTg) -1

This is exactly the spectrum in the observer's frame of the Planck curve at the
modified temperature

To = Tg. (142)71




This shows that the effects of the expansion of the Universe on a
black-body spectrum are to transform it in frequency so that it retains its
Planckian character for all observers, but also so that the observed shape
corresponds to different temperatures for observers for whom the source has

different red shifts.

2.5 The Local Hubble Relations : z-D and z-d

We will define the 'Hubble relations' to be the approximations for z<<1 to
the exact redshift-distance laws which result fram our models and equations
(2.6) and (2.9). In the limit 2<<1, (g1, the function S (0y) in
Section 2.1 tends asymptotically to (; regardless of the value of the
curvature constant k. In this case the relationship between a source's
parametric coordinate O and the time of emission of the source's radiation,

tg, is
t

0
O (tg) = godt/R(t)
te
Considering T to be a function of t; we can expand it as a Taylor series
around its value at tg (which is obviously zero by definition):

Gltg) = Gpltg) - Tp(to)At + Tp(to)Atd/2 - Tp(to)Atd/e + .. .

22 3 (g2 2
.t , st | Rg _ Ko
RrE et R(t) T 2Rty T 6 Rty Rty

Now use equation (2.6) for the bolometric distance D,:

Dp = VER(tp (1+z)

c+2) e + [Rito)/Ritg)] At2 + [Rito) /R(t) |2 (L+amAt3/6 + ... }

]

c(1+2).§dt + £(tg)he? + £2(tg) (Ltap)At3/6 + ... {

and substitute for At in terms of z using the inverse of expansion (2.4):
Bt = (2/£(tp). §1 - (l4gy/Dz + 0(z) f

so that we can collect together the series expansion

Dy = cz/E (tg). {1 + z(1-dg)/2 + 0(z2) ]



which inverts to give
2 % 3
(2.16) cz = £ (tg)Dp - £4(tg) Dp(l-gg) /2¢ + O(Dp)

We see from this that in the limit of Dp»0, 220, cz-»v (the
recessional velccity of the source), the function f(ty) becomes what we
normally term the Hubble constant Hy, i.e. the coefficient of the
first-order term in the v-D, relation. With this identification, we see that

(2.17) Hg = R(tg)/R(tp)

which will be a function of ty in any of our models. Thus the 'Hubble
constant' would more properly be termed the 'Hubble parameter'. We will
replace the clumsy notation f£(tp) with Hy in what follows.

Equation (2.9) for the diametric distance may be similarly expanded as a
power law in the 'local' approximation to give

6= (cz/p) . §1 - 2 (34qp) /2 + 0(z3) §
which inverts to give
(2.18) cz = Hod + H5d%(3+qy) /2c + 0(d3)

Equations (2.16), (2.17) and (2.18) form the basis for an observational
program which could help us decide which, if any, of the theoretical
wor ld-models corresponds to the actual Universe around us. By determining the
exact velocity-distance laws for standard objects participating in the local
Hubble flow we could find the ccefficients Hp, A and B in

cz=HODb+ADE; and
cz=HOd+Bd2

Obtaining the value of Hy from the first-order (coefficients of these laws, we
could then extract qg from

A = -H5(1~qg)/2c  and B = H3(3+gg) /2c

Note that this determination of the coeff icients in the local Hubble
relations would tell us the value of q regardless of whether or not the
cosmological constant A= 0. If we are prepared to assume that A= 0, the
value of gy uniquely fixes the best-fit world-model (see Section 1.3.5). It
would be better however to test for the value of A via another set of
Observations.




2.6 The Relation between g, ¢ and A

If we were successful in determining the value of g, we could test for
the value of A by checking whether this observed value of the deceleration
parameter is in fact compatible with pure gravitational deceleration produced
by the mean density ¢ of the Universe that exists around us at our observing
time tg. To formulate this test, we return to equation M and make the
scaling time ty the time ty of our observations: (8

3RR? = AR3 - 4mGeoR3(tg)

Now let all quantities take their values at the time t=t, when we observe the
Universe:

IR(tg) R (tg) = AR3(tg) - 41GooR3(tg)
which can be rearranged to give
A = anGeg + 3.[R(tg) R(ty))
{, Vi :
On substituting for gp from (.L.al%' and Hy fram (2.17) we find
—-— ) 1
(2.19) A = 4mGgy - 3qpH)

Observational cosmology - i.e., the search for which, if any, of the
solutions to the Friedmann-Lemaitre equation corresponds to the mean properties
of our Universe - can therefore be regarded as a search for three numbers :
Hg» 9o and ¢g, fram which we could infer A, R(t) and k.

Note that if A = 0, the density

(2.20) ¢ = 3H3/8TG

~

is a 'critical value' for po. If £0>fcr then gp>0.5 and the A=0
Universe is 'closed'; if ¢p<gc, then qu<0.5 and the A=0 Universe is
' ' i

(Pen .

2.7 Exact Distance~Redshift Laws

.7
If we let the quantities in equation (l=67 also take their values at t =
to = tg, we obtain



- 12 -

(2.21) ke? = R2(tg). { 41GEy - a5} - R(to)

" A
Using this and relation (2.19) to eliminate A and k from the Friedmann-Lemaitre
eguation (.L«S) it can be shown that this equation reduces to the form:

(2.22) E%Y/dx 1/4(Y)

where %2 (Y) v/[20 + (40+1-31)Y - (g0 - v—0)3{3_]

Y = R(t)/R(ty = (1+z)71

X = Hg.t and Jp = 41rG§0/3Hg
This alternate formulation (2.22) of the Friedmann-Iemaitre equation is
convenient for parameterising its solutions in terms of g, Hy and G,

To obtain exact distance-red shift laws fram equations (2.6) and (2.9) we
need a prescription for eliminating T from these expressmns in favour of
the observable, z. The transformed E‘rledmann-Lenaltre equation allows us to
show that this can be done in a general case, as follows. We return to (2.1)
and its integral

to
Sk () = | cdt/R(t)
€
Using (2.22) we can transform the right-hand side as follows:
Lo Ko
[ cdt c de )Xz (ay . ¢ §Z(z)dz
H

JR(t) HOR(to)"'" HOR(to oR(tg)) ™~ (1+2)

i.e. Sg(Tp) = [C/HOR(tO)J- I(z), where I(z) is a calculable function

of z. As R(tp) is an arbitrary scaling factor, it will always cancel out
fraom the final result for Dy(z) or d(z). Same special cases have
particularly simple solutions for I(z) and thus for the distance-red shift
laws.,

If A= 0, the general relationship reduces to (W.Mattig, Astr. Nach.,
284, 109 (1958)):

(2.23) Dy = [c/HOq{‘)].iqoz + (9o~1) [VT#2qz) - 13§

For the Einstein-de Sitter model in particular it reduces to

(2.24) Dy = (2c/p).¢(142) - {(1#2)



2.8 Source Counts

An observational test that is sometimes attempted in order to discriminate
among cosmological models is to make counts of the number N of a given class of
source brighter than some limiting brightness B in a standard area of sky.
Suppose that the objects have a mean luminosity <L> and that, for simplicity,
all quantities are measured bolometrically. Then in terms of the parametric
cocrdinate @ the proper volume dV at coordinate depths between ( and

O+d0p is, from the Robertson-Walker metric (1.10)

@ = R(tpATpA (1ka5) . 4R (tg) T
= 4mR3(tp) JOp. AT/ /Y (1Ko s)
The number dN of sources in this proper volume is
dN = n(tg).4av

4mR3(tg)n (tg) (TN (TkoE)] .d:

where tp is the time of emission of the radiation that is received at tj
fram sources at this T, and n(tg) is the proper volume number density of
the sources of that class at time tp. In source-conserving models with no
super imposed astrophysical evolution, n(tg) = n(tO)R3(to)/R3(tE),

and n(ty) 1is asymptotically the local number density inferred from
observations of local volumes of the Universe using either photometric or
diametric distance scaling.

Fran (2.1) we can substitute
c dtg for R(tE).dUi/4(l—kvE), so that
& = 47R?(tg)n (tp)Tp-cdty

and the total number of sources N observed back to a given time of emission t*
will be

Yo
(2.28) N(t*) = 4ncn(to)R3(to)J[Q'?é(ts).dtg/R(tE)]
{*

For a given model, with known R(t), O will be a known function of te,
so this integral will give an explicit form for N(t*). All that remains in
order to derive the associated source count N(B) formula is to comwvert from
t* to B using




B = @L>/4mR2(tg) (l+z*) 20*2

For counts of optical objects, whose spectra allow us to obtain
source~by—-source red shifts, the last step may not be necessary, as the N(z)
relation can (in principle) be observed directly, without using apparent
brightness B as a distance indicator. For comparison with such data, (2.28)
can be converted to an N (z*) relation,

2.9 The ages of A= 0 models

If we are prepared to assume that A = 0 then analytic relations exist
between the age of the model since the (last) singularity at which R(t)=0, and
the observed values of the Hubble parameter H, and the deceleration parameter
dp. Astrophysical arguments that lead to estimates of the age of the
Universe can therefore be used to limit the (Hy, qo) parameter pair if A =
0. To cbtain the age relationships, rewrite egquation (1.7)

R2 = 2GMy/R ~ kc?

in terms of a new variable u defined by

(2.29) R = (26Mp/c?) .u?

to obtain §2 = (c/h)z.(l~ku2), i.e,

R = (c/u).y (1-ku?)

Fram the definition of u (2.29) we also have

R = 2u.U. (2GMg/c?)

and equating these two expressions for R gives

U = Y(1~ku?) .2, (c3/40Mp)

The age of the model at the time of an cbservation, to, 1is given by
to u~0

By = S at = (4GMg/c3). g u?/y (1~k?) . du

0 o}
where uy is the value of u at the time of cbservation ty. We can therefore

write

(2.31) tg = (26Mg/c3) .Fy (Uy) , where




rr
—
=
i

(V5
= 2 ‘5 u? /yf (L-ku?) .du
(o)

= sinlu - uV(l—uz) (k = +1)
= B3 (k = 0)
= uy(l+?) + sinb™u  (k = -1

Equation (2.31) is more useful if we eliminate the scaling mass My by noting
that, fram (2.17),

Hy = R(tg) /R(tg) = 205/t = ¥(1-kud) .u33. (c3/2aMy), so that
(2.32) 2@Mp/c3 =y (1~kud) . ug3. by
where ty = 1/Hy is the 'Hubble time' which would be the age of an
undecelerated Universe expanding at the observed Hubble rate., From eguation
(1.14) we can write the deceleration parameter
= ~R(to)R R2 = 1/2(1-ku2 h
9o R(tg)R(tg) /R (L) 72 0) + SO that
(2.33) 1 - kud = 1/205, and  ug = {(295-1)/2kq,
Combining (2.31), (2.32) and (2.33) we have

2kg35Q- 1 4% 299-1
(2.34) to/ty = 4w B (k # 0)
294571 29 2kq,

For k=0 this is degenerate and the limit follows directly from Section 1.3.2

&/ty = 2/3 (k=0)

Knowledge of the astrophysical age ty and the Hubble time ty can
therefore be used to estimate gy from (2.34), if A=o.




