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CFIAPTER `iWO: cbservable Properties of World-t dels - Theory 

2.1 The Red Shift Relation 

In order to relate observable quantities to the functional form of the 

ccsmolc ical scale factor R(t), we need to analyse the propagation of light 

through the ncadel Ciiverse. While the main relationships can be obtained 

within the neo--Newtonian framework, they can be found more readily from the GR 

formulation (which is better suited to the description of photon propagation). 

The starting-point is the fact that photons travel on null geodesics such that 

the events along the path of a proton through the model satisfy 

cis2 = 0 

which for radially-travelling photons in the Robertson-Walker metric (1.9) 

reduces to 

c2dt2 = R2 (t) dr2/ (1-k, 2) 
; 

We will normally be interested in radially-travelling photons because we can 

choose either the observer or the emitter of the radiation to be at the origin 
of the (T,E , 7. ) coordinates. The above equation can be rewritten in the more 

useful form 

(2.1) cdt/R(t) _ (+/-)d r/ (1-k ) 

which relates the time interval dt to the radial coordinate interval dTalong a 
section of a photon's path at coordinates (' t) . The (+) sign will apply for 
photons which are travelling outwards from the origin of coordinates, the (-) 
sign for photons which are travelling inwards. If we integrate (2.1) along the 
finite path from a point of emission rE at emission time t E to a point of 
observation at observation time we find that 

s cd't _ `+ r  d 

j R (t) ~ `-) j d (1- k ) 

Ncw ccnsider applying this relatici to the path of a Fhoton emitted from a 
source at coordinate E at time tE and cbserved by an observer at the 
origin ((1=0) at the later time to. In this case we are dealing with an 

inwards-propagating photon, so the (-) sign applies in (2.1) and 

• 
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to 0 

t~ R(t) 

_ 

.r j (1lkr2)

The integral on the right is just Sk(VE) fran Section 1.2.5, which is a 

constant for a given source of radiation (remember that E is the constant 

co--moving coordinate of a given FO, galaxy, etc.) . This means that a second 

photon, emitted from the same source at time (tE+®tE) and received by the 

same observer at time (tO+dtO) will also satisfy 

rp+Atc 
f t 

R(t) 
t t Q~ 

where the right hand side has the same value Sk('Ij ). This requires that 

odt I cdt 

J R(t) J R(t) 

ro 
cat cdt__ c4t~ 

t~ 
R(t) R(tO) R(tE) 

which in turn means that 

(2.2) 1tE/R(tE ) = it/R(t 0) 

Now if the source is radiating a monochranatic frequency 'E, the nuirber 

of wave crests emitted in time AtE will be N = ~EAt E. As this same 

number N of wave crests is received by the observer in the time & O, the wave 

frequency perceived by the observer must be 

= N/&O =

= ~E•R(tE)/R(tO) 

This gives an expression for the Doppler Effect in the model Universe, 
which can be written 

(2.3) (l+z) = 2E/`O = R(t0)/R(tE) 

where z is the usual red shift parameter of cbservational astronomy. The red 
shift is seen to be a measure of the relative expansion of the Universe between 
the time of reception of a photon by the observer and the time of its emission 
by its source, so that 
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z = [R(tp)/R(tE) -1 = LR(tQ,tE)/R(tE) 

For tunes of emission and reception of the radiation that 
are sufficiently 

close, i.e. for photons received fran 'local' sources, we can write 

R(tE) = R(t O) - R(t0)Lt. + R(tO) t 2/ 2 + O(1t3) 

where .ut = (tO-tE) is a small time interval whose higher powers may be 

neglected. Equation (2.3) could then be written 

(l+z)-1 = R(tE)/R(tO) = 1 - f(tO)At - igOf2 (tO)~t2 + O(1t3) 

where is the value of the deceleration parameter (Section 1.3.5) at time 

tO and f(t) is the scalar function introduced in Section 1.2.2, Equation 

(1.1). Inverting this expansion gives 

1 + z = 1 + f (tO)Lt + f 2(tO)11t2 (1 + qO/2) + O( t 3) 

so that in the limit z «l, 

(2.4) z = f (tO) t + f 2(tO) (1 + gO/2)Lt2

This is a useful expansion when making 'local' approximations, e.g. when 

deriving the 'Hubble relations' as in Section 2.5 belaa. 

2.2 Photometric Distances 

Photometric distances are the distances that we estimate for objects by 
assuring them to be 'standard candles', i.e. objects of standard (known) 

luminosity. If we measure the apparent brightness 3 (energy falling on unit 
area of a detector in unit time in a specified instrumental bandwidth) of an 
object of standard luminosity L, we infer a photometric distance D from 

(2.5) B = L/4nD2

i.e. D is the distance estimated frn measured B and assumed L on the 
assumption of an inverse square law of light propagation and Euclidean 
geometry. To relate measurable photometric distances to the parameters of 
model Universes, we need to consider several cases of practical interest. 

• 
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2.2.1 & 1cinetric photometry 

Consider first the idealised case in which the observer's detector is 

presumed to respond equally to all wavelengths in the electromagnetic spectrum 

- it is an ideal bolometer. Consider a source with a bolanetric luminosity L, 

at coordinate C~; in the rrodel Universe; it emits radiation at time tE which 

is rbserved at the origin =O at time tC. Three factors now enter into the 

canputation of the apparent brightness B received by the observer: 

1. The area dilution factor. At the time of observation, the 
radiation from the source is distributed uniformly over a sphere, centred on 

the source, whose proper area can be found by integrating over all and 

using the Robertson-  Walker metric (1.9) - this area is A = 4rr.R2 (t0) . , 
and the pacer density at the observer due to purely geometrical dilution is 

I/A. In addition we must consider two different effects of the red shift: 
2. The photon energy loss factor. Every photon emitted by the source 

with energy E = hVE is received by the observer with energy E' = h``D , so 
the total energy received by the observer is less than that emitted by the 

source by a factor f e = ''O/ 'E = ( l+z) -1. 

3. The photon rate factor. N photons emitted in a time interval L.tE 

will be received over a longer time interval tC = AtE(1+z), so the 

rate of photon reception is decreased by a factor f r = L.tE/L t 0 = 
(1+z)-1. Note that this rate factor multiplies the photon energy loss factor 

fe. The rate of energy reception Fran the source per unit area of a 
bolanetric detector is therefore: 

B(t~) = f e . f r .L/41 ni 2 (to) 

= L,/ (4 j 2 ( tU ) (l+z ) 2) 

We can therefore write the bolanetric distance 

R(t~) 

(2.6) Eb(to) = R(tp) (l+z) 

Db in terms of E and 

To make this an explicit D-z relationship, we need to put in the details of a 
particular model; before doing this, consider other, more practical, forms for 

the photanetr is distance. 

2.2.2 Finite-bandwidth photometry 

In practice we will use a radiation detector with a band-limited 

instrumental response I (\ ) , which will be as constant as possible between 
frequencies 4'Cl and 4'02, and as nearly zero as possible at 0 <  Oi 
and 'o > ~'O2. In this case the area dilution factor and the photon rate 
factor fr enter into the formulation as before, but the photon energy factor 
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f e is replaced try the effect of the redshift in moving different parts of the 

source's radiation spectrum through the instrumental bandpass. For a nearby 

(zero-rd -shift) source the total luminosity in the instrumental bandpass would 

be 
Vo-

L = I ( ~'O) P (vO) d'rO 
v9, 

where ?(Y) is the spectral p er emitted by the source (luminosity per unit 

frequency width), br a source at a redshift z however, the radiation received 

at frequency 0 was emitted at frequency c'O ( l+z ) , so the effective 

luminosity of the source in the detector's bandpass is 

\ I (\„U) p(''0 (l+z) )d )0 = L.KI ~ n (z) . (l+z)-1

Here the correction factor KI,p(z) depends on the details of the source 

spectrum and on the shape of the instrumental response curve I() ), as well 

as on the red shift z of the source. It may be greater than, or less than, 
unity, depending on the distribution of energy in the source spectrum P(+'). 

These 'K-corrections' therefore have to be determined for particular 

instruments and particular source spectra, e.g. for he standard photanetr is U, 
B, V filters and for elliptical galaxy colours. When the appropriate 
K-corrections are known, distances Df estimated photometrically through 

finite-bandwidth instruments can be converted to equivalent Lxilometric 

distances Db via 

(2.7) E = Df. 'KI1p(z) 

The determination of the K-corrections is particularly difficult for 
distant (high-red-shift) objects, as computation of the K-correction in the 
visible region of the spectrum may require knowledge of the ultraviolet spectra 
of nearby objects of the sane type. Until the advent of satellite 

cbservator. ies, such K-corrections could not be based on observation, but were 

estimated fran theoretical models. 
For radio sources, the situation is often simpler. Most radio 

measurements are made with instruments whose bandwidths are narrow conpared 

with the observing frequency ( in order to escape the effects of man-made 
signals in the radio spectrum), and many radio galaxies and quasars have radio 

spectra which can be approximated over a wide frequency range by a poser law 

where ( is called the spectral index. In this case we can approximate I (J) 

with the Dirac delta-f unction at '+ and put 
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r(e 

~=off s 

KI'p (z) = (l+z).VE~/JDa = (l+z)1-a

2.3 Diametric Distances 

Diametric distances are the distances that we estimate for objects by 

assuming them to be 'rigid rods', i.e. objects of standard (known) linear size. 

If we measure the angular diameter t (radians) of an object of known linear 

size s transverse to the line of sight, we infer a diametric distance d fran 

(2.8) cj = s/d 

• The angle t measures the angle between the paths of two photons which 

travelled radially towards the observer fran the two extreme ends of the 

source, both setting out at the same time of emission tE. Fran the metric 

(1.9) we see that the element of proper length perpendicular to the radial 

direction is 

dx2 = R2 (t)T2 (d 6l  + sin29d~2) 

We can eliminate the term involving sing 9 by choosing our angular coordinates 

such that the source is at ®=0. It follvas that the angle between two 

radially-travelling photons leaving the ends of an object of finite length s 

transverse to the radial direction at the same time tE is 

= s/ ER (tE ) 

As this angle between the radial photons is preserved as they propagate through 

the model Universe, we infer that the diametric distance 

(2.9) d(t0) = J ER(tE) 

2.3.1 The relation between bolometric and diametric distances 

Comparison of our results (2.6) and (2.9) shags that the ratio Db/d of 

the bolanetric and diametric distances for the same object is 

(2.10) Db/d = J R(tp) (l+z)/ ER(tE) = (1+z) 2

regardless of the functional form of R ( t)  . There is therefore no 
information about the cosmological model itself (i.e., about P(t)) to be 

obtained by comparing bolometric and diametric distances for a given class of 

• 
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abject as functions of red shift z. Note also that the ratio of Db/d becomes 

large for objects in the presently-known range of red shifts for quasars (z up 

to 3.5), so that the differences between photometric and diametric distance 

estimates cannot be ignored for work on the more distant systems accessible to 

modern teleseq.es. 

2.4 Surface Brightness Relations 

2.4 .1 Bolametr is surface brightness 

The surface brightness of an image is its apparent brightness per unit 

solid angle, i.e. the surface brightness F(V) at a given observing frequency 
j is 

(2.11) F("0)  = B (a?p) /s 

where y is the solid angle subtended at the observer by the source. The 

bolanetric surface brightness is F = SF(v)d'.) , which for sources whose angular 

size is independent of frequency is SB(v)&/a1.. For a black-body source, the 
bolanetric surface brightness F is proportional to T4 where T is the 

effective temperature of the black-body image. Fbr a circular source of proper 

diameter s we have 

X31, = s2/4nd2 and B = L/4irDb 

so that 

F = (L/Trs2) . (d/bb) 2, i .e. 

(2.12) F

which for a black-body image implies that the effective temperature 

(2.13) T ( l+z ) 
_1 

Note that this bolanetric black-body temperature relation could be written 

(2.14) T(t0)/r(t ) =
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2.4.2 The spectrum of a distant black-body source 

Dguation (2.13) shows that the temperature T estimated bolanetrically

fran a black-body image falls off as (l+z)-1. It is interesting to examine 
the detailed behaviour of the spectrum of a black body in the nLdel Universe. 
To do this, imagine that we have a strictly monochranatic detector, so that 

I (''o) is the Dirac delta function at VD in the notation of Section 2.2.2. 
In that case the K-correction is just 

Kp(z) = (l+z)P(d0 (1+z))/P(VD) = (l+z)P(YE)/P(Vo) 

so that the apparent brightness at frequency \1 in the observed spectrum is 

E(gyp) = P ( vE) /4ncTER2 ( tp) ( l+z) 

from Section 2.2.2. We can therefore write the observed surface brightness at 

frequency J)

• 

• 

= B()0)/SL 

.4wT R2(tE) 
4ncrER2 (to) (l+z )

in the notation of Section 2.3. This simplifies to 

(2.15) F('.'D) = F (VE) . (1+z) -3 

Now for a black-body source at a temperature TE, F(VE) is the emitted 

Planck spectrum 

FIVE) = 2hv /c 2texp(h\ E/kTE)-1 

so that the observed surface brightness spectrum is, by (2.14) 

F (''U) = 2h\VE/ (l+z ) 3/c9exp (hVE/kTE) -l} 

= 2h~~/c2~exp{h.'D (l+z)/kTE)-1 

This is exactly the spectrum in the observer's frame of the Planck curve at the 

modified temperature 

To = TE. (l+z )-1 
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This shows that the effects of the expansion of the Universe on a 

black-body spectrum are to transform it in frequency so that it retains its 

Planckian character for all observers, but also so that the observed shape 

corresponds to different temperatures for observers for whom the source has 

different red shifts. 

2.5 The Local Hubble Relations z-D and z-d 

We will define the 'Hubble relations' to be the approximations for z«1 to 

the exact redshift-distance laws which result from our models and equations 

(2.6) and (2.9) . In the limit z«1, ( <<l, the function Sk (IE ) in 

Section 2.1 tends asymptotically to ('E regardless of the value of the 
curvature constant k. In this case the relationship between a source's 

parametric coordinate cj"I, and the time of emission of the source's radiation, 
tE , is 

4p 

tE 
Considering E to be a function of tE we can expand it as a Taylor series 
around its value at tQ (which is obviously zero by definition) : 

1E ( tE) _ C3 (tO) - ~,E (tO) t + TE ( tO) t 2/ 2 - iE ( t O) it 3/ 6 + . . 

Q --~ + cdt cLt2R(tO) cQt3
R(t? 2 R2(tO) -  6 RZ (tO) 

" 2
R (tO) 

Noa use equation (2.6) for the bolometric distance Lb: 

Db = ER(tO) (l+z) 

R(to)} 
+ 

= c(l+z).'%.t + [n(tO)/R(to)J t 2 + [R(tO)/R(t ]2(1+gO) .t3/ 6 + . . . 

. t + f (tOUt 2 + f 2(tO) (l+gO)Gt3/ 6 + 

and substitute for at in terms of z using the inverse of expansion (2.4): 

apt = ( z/f ( tO) ) . 7 1 - (1+gO/2) z + p(z2) S' 
1 

so that we can collect together the series expansion 

Db = cz/f (tO) . .l + z(l O)/2  + O (z2) 
} 
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which inverts to give 

(2.16) cz = f (tO)Db - f 2(tO)Db(1-%)/2c + O(D) 

We see fran this that in the limit of Db-~ 0, z40,  cz-~v (the 

recessional velocity of the source) , the function f (tO) becomes what we 

normally term the Hubble constant HO, i.e. the coefficient of the 

first-order term in the v-Db relation. With this identification, we see that 

(2.17) HO = R(tO)/R(tO) 

which will be a function of t O in any of our models. Thus the 'Hubble 

constant' would more properly be termed the 'Hubble parameter'. We will 

replace the clumsy notation f(t3) with HO in what follows. 
Equation (2.9) for the diametric distance may be similarly expanded as a 

power law in the 'local' approximation to give 

d = (cz/HO) , i 1 - z (34 )/2 + O(z3) 

which inverts to give 

(2.18) cz = Hod + Hid 2 (3+qp) /2c + O(d3) 

Equations (2.16), (2.17) and (2.18) form the basis for an observational 

program which could help us decide which, if any, of the theoretical 

world-models corresponds to the actual Universe around us. By determining the 

exact velocity-distance laws for standard objects participating in the local 

Hubble flew we could find the coefficients HO, A and B in 

cz = HODb + ADh and 

c z = I Od + Ed 2

Obtaining the value of ft  from the first -order 
could then extract qO from 

A = -HD (1-%) /2c and B = I3134%)/2c 

coefficients of these laws, we 

Note that this determination of the coeff 4cients in the local Hubble 
relations would tell us the value of qO regard ess of whether or not the 
cosmological constant A= 0. If we are prepared to assume that A = 0, the 
value of qO uniquely fixes the best-fit world-model (see Section 1.3.5) . It 
would be better haaever to test for the value of A via another set of 
observations. 
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2.6 The Relation between qn, 'ç and A 

If we were successful in determining the value of qO, we could test for 

the value of A by checking whether this observed value of the deceleration 

parameter is in fact canpatible with pure gravitational deceleration produced 

by the mean density S'o of the Universe that exists around us at our observing 
time to. To formulate this test, we return to equation (].M and make the 

scaling time t 0 the time tO of our observations: 

3RR2 = AR3 - 4fGQOR3(tO) 

Now let all quantities take their values at the time t=tO when we observe the 

Universe: 

3R(to)R2 (to) = AR3 (tO) - 4,rGgoR3 ( tO) 

which can be rearranged to give 

A = 4irGcO + 3.[R(to)/R(to)a 

On substituting for qO from 

(2.19) A = 4iTGfO - 3gOH j 

and HO f r an (2.17) we find 

Observational cosmology - i.e., the search for which, if any, of the 
solutions to the Friedmann-Lemaitre equation corresponds to the mean properties 
of our Universe - can therefore be regarded as a search for three numbers 
Ho, qO and PO, frcxn which we could infer A, R(t) and k. 

Note that if .A = 0, the density 

(2.20) kc = 3H0/8uG 

is a 'critical value' for .~'O• If SO>gc, then qO>0.5 and the N~ 
Universe is 'closed'; if 

SO<Sc, 
then qO<0.5 and the n=0 Universe is 

'open' . 

2.7 Exact Distance-Redshift Laws 

If we let the quantities in equation ( also take their values at t = 
to = to, we obtain 
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(2.21) kc2 = R2(tO). 41TG 0 - grJ1 - R2(tO) 

Using this and relation (2.19) to eliminate i\ and k Fran the Friedmann-Lemaitre 

equation (J.r8) it can be shown that this equation reduces to the form: 

(2.22) Y/dX = 1/Z (Y) 

where Z2 (Y) = Y/ 2cr0 + (ci3+l-3Q"D) Y — (% — T0) Y3 J 

• 

• 

Y = R(t)/R(tO) _ (1+z) -1

X = R.D.t and QÒ = 4irGf0/3I 

This alternate formulation (2.22) of the Friedmann-Lemaitre equation is 

convenient for parameterising its solutions in terms of qO, HD and C. 

To obtain exact distance-red shift laws from equations (2.6) and (2.9) we 
need a prescription for eliminating c from these expressions in favour of 

the observable, z. The transformed Friedmann-Lemaitre equation allows us to 

show that this can be done in a general case, as follows. We return to (2.1) 

and its integral 

to 
Sk (~E) _ Scdt/R(t) 

t~ 

Using (2.22) we can transform the right-hand side as follows: 

tQ Xa 1 
cdt c dX c dY _  c  IZ'(z )dz 

J R(t)  - H0R (tO) Y - -v - .  - --~- ,,... 

i.e. SK (rE) _ [c/f0R(t0)3. 1(z), where I(z) is a calculable function 
of z. As R(tO) is an arbitrary scaling factor, it will always cancel out 

fran the final result for Db(z) or d(z) . Sane special cases have 
particularly simple solutions for I(z) and thus for the distance-red shift 
laws. 

If A= 0, the general relationship reduces to (W.Mattig, Astr. Nach. , 
284, 109 (1958)): 

(2.23) Db = Uc O)4q()z + (%-1)['(1+2gpz) - 1 

For the Einstein-de Sitter model in particular it reduces to 

(2.24) Db = (2c/+3O). (1+z) -
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2.8 Source Counts 

• 

• 

• 

An observational test that is sometimes attempted in order to discriminate 

among cosmological models is to make counts of the number N of a given class of 

source brighter than some limiting brightness B in a standard area of sky. 

Suppose that the objects have a mean luminosity <L> and that, for simplicity, 

all quantities are measured bolnetrically. Then in terms of the parametric 

coordinate Q the prover volume dV at coordinate depths between (!"E and 

is, from the Itbertson-Walker metric (1.10) 

dV = R(tE)d0 /I(1—lcT~) . 41TR2 (tE)cT 

= 41TR3(tE) .Og.dVE/ (1—kcl ) 

The number dN of sources in this proper volume is 

dN =

= 41rR3(tE)n(tE). ~ /d(1-k0'E)~.ds7 

where tE is the time of emission of the radiation that is received at tO 
fran sources at this CE, and n(tE) is the proper volume number density of 

the sources of that class at time tE. In source-conserving models with no 

superimposed astrophysical evolution, n(tE) = n(to)R3(to)/R3(tE) ► 

and n(tO) is asymptotically the local number density inferred from 

observations of local volumes of the Universe using either photometric or 

diametric distance scaling. 

Fran (2.1) we can substitute 

c dtE for R(tE ) .dU/i(1-kv ) , so that 

d4 = 41rR2(tE) n (tE)TE.cdtE

and the total number of sources N observed back to a given time of emission t* 
will be 

(~
to

(2.28) N(t*) = 41rcn(tC)R3(tC) J ~UE(tE).dt E/R(tE)] 

For a given model, with known R(t) , GE will be a known function of t E , 
so this integral will give an explicit form for N(t*). All that remains in 
order to derive the associated source count N(13) formula is to convert from 
t* to B using 
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B = KL>/41TR2(tO ) (1+z*) 2tr*2

For counts of optical objects, whose spectra allow us to obtain 

source--by-saurce red shifts, the last step may not be necessary, as the N(z) 

relation can (in principle) be observed directly, without using apparent 

brightness B as a distance indicator. Ftr canparison with such data, (2.28) 

can be converted to an N (z*) relation. 

2.9 The ages of A = 0 models 

If we are prepared to assume that A = 0 then analytic relations exist 

between the age of the model since the (last) singularity at which R(t)=0, and 

the observed values of the Hubble parameter HO and the deceleration parameter 

qG. Astrophysical arguments that lei to estimates of the age of the 
Universe can therefore be used to limit the (HG, q) parameter pair if A = 

0. To obtain the age relationships, rewrite equation (1.7) 

R2 = 2GM0/R -- kc2

in terms of a new variable u defined by 

(2.29) R = (2GM0/c2 ) .u2

to obtain R2 = (c/u) 2. (1-ku2 ) , i.e. 

R = (c/u) .I(1-ku2 ) 

Fran the definition of u (2.29) we also have 

R = 2 u. u. (2GM0/c2 ) 

and equating these two expressions for R gives 

u = /(1-ku2 ) .u 2 . (c3/ 4GM0 ) 

The age of the rrodel at the time of an observation, t v, is given by 
to uo  

tO = S dt = (4GM0/c3) . u2/J(1-k ) .du 
~ 0 

where u is the value of u at the time of observation tO. We can therefore 

write 

(2.31) tO = (2GM0/c3) .Fk (uo) , where 
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Fk (u) = 2 5u 2/I(l_ku2)  .du 
0 

= s1n lu - ul(1-u 2) (k = +1) 

= u3/ 3 ( k = 0) 

= uf(1+u2 ) + sinh- lu (k = -1) 

Equation (2.31) is ;ore useful if we eliminate the scaling mass 
that, from (2.17), 

HD = R(tO) /R ( t O) = 2uO/uO = / l -k uo) . u 3 . (c3/ 2GM(J ) , so that 

(2.32) 2GM0/c3 =

MO by noting 

where tH = 1/HD is the 'Hubble time which would be the age of an 

undecelerated Universe expanding at the observed Hubble rate. From equation 
(1.14) we can write the deceleration parameter 

qO = -R(tO)R(tO)/R2 (tO) = 1/2 (1-k uo) , so that 

(2.33) 1 - kuo = 1/2qO, and uO = ,~(2qO-1)/2kgO

Combining (2.31) , (2.32) and (2.33) we have 

3 
2k ct~ 

(2.34) Cp/ tH = 
2qO-1 

\:/z 
(k 0) 

For k=0 this is degenerate and the limit follows directly from Section 1.3.2 

= 2/3 (k 4 ) 

Knowledge of the astrophysical age and the Hubble time tH can 

therefore be used to estimate q  fran (2.34), if h = 0. 


