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TRANSFORM THEORY OF RADIO STAR INTERFLtOSETERS 

In these notes the principles of three common types of radio-star 

intereeerometers in use in radio astrox oI y will be discussed using tue ideas of 

Fourier transforms in conjunction with the mathematical techniques of convolution. 

Tine instruments to be treated are tue radio Lictielson interferometer, the pnase-

switcned (it4yle) interferometer, and the post-detector (Banbury Brown and T'wiss) 

interferometer, sometimes referred to as the intensity correlation interferometer. 

It is thought that the operation of these instruments is so clearly brought out by 

a discussion in terms of ?ourier theory that this approach is greatly preferable to 

more immediately "physical" arguments 

1. BAaIC ThEORY 

1.1 An aperture in coherent illumination 

pie begin with the Fresnel-Kirc Doff diffraction integral 

If ikr 
  .cos(n,r) - cos(n,r1) 
r 

s 
wr ,oh relates the disturbance of a scalar wave field 1I at a point P to the 

distribution of ifr over any surrounding surface, ( being a point on such a surface. 

Consider at first an aperture in one dimension illuminatea by a point source, so 

that plane wavefronts arrive at the aperture from the object space. 'e wish to 

calculate the distribution of signal in the irruge space, and will use the e cation 

(1) for t~.is purpose. he surface of integration will therefore extend over the 

entire aperture plane, considered to extend to positive and negative infinities, 

and also over a hemisphere of such indefinitely large radius that contributions to 

from points on it may be neglected. If the aperture is considered to be in the 

x dimension, we approximate its effect on the incident plane wive by writing for 

the "aperture function" defined as a(x) = 0 for x lying outside the aperture, 

aua a(x) = 1 for x lying inside the aperture. T'ais is equivale _t to the first -order 

perturbation calculation of quantum mecnauics, for if the interaction of the 

incident plane wave with the aperture were incluued to the full, a(x) would contain 

terms describing the modification of tue incident +cave within the aperture. The use 

of first -order perturbation only (mown to optics as t. Ven.int's Hypothesis) has 

been found to be adequate for most practical purposes. For the subsequent treatment 

of radio interferometers it is quite sufficient. 'de will furthermore observe the 

variation in signal at points P in the image space whose values of r will all be 

different. de make the approximation that the phase ef.'ect of r (exponential in r/h) 

is very much more than the amplitude effect of r (inverse proportionality). ';re also 

rn  e the approximation that we deal in such small angle ranges that the obliquity 

cosine factor is cont ant • 'rie can then write 

Coast I 1 a(X) 
•e r.t F A JJ 

eonst f ̀a( x) .eik(R - x.sind) ,dx A  3

where it is the noru  21 uistarice from tue aperture plane to the plane of observation, 

and is the angle to this normal. The f...ctor e'1  is clearly common to all 'ng1  es 
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Q and can be included in the constant multiplying the whole expression 

Defining the notation 

tie integral can be written 

X = X'X S = sink 

r
+~ 

= const .

-.G 

This is the basic result from w`ai.cia all the subsequent treatment will proceed. It 

tells us that the distribution of signal in angle due to an aperture illui,inated 

by a plane wave (point source response of the aperture) is proportional to the 

Fourier transform of tae aperture function a(x), i.e. to the function A(s) in the 

convention41 notation for Fourier transforms. For a two-dimensional aperture, the 

analysis can be curried through in an exactly analogous manner to give 

~~(Jl 
coast. ~a(x x 

 + X 5 ~ A 

1, 2 , •e 1 1 2 2
) 

4dk l .dX2 ('*) 

-.p -.p 

= const. A(51,52) 

If the aperture were supposed to be illuminated by a coherent wave 

field giving a distribution f(X), then tue signal distribution in angle would be 

given by 

WP = const .

Now from tee convolution theorem for Fourier transforms, we know that 

the Fourier transform of a product such as a(x).f(x) can be expressed a* the 

convolution of the Fourier transforms A(S), F(S), i.e. s the function A( )~F(S). 

Now we i]ave from the general theory of transfer and reception that the output of a 

system is the convolution of tue input with a function representing the effect of 

tine system. here we see that, it tine output is tue amplitude distribution in angle 

of te wave field in tine image space, and tue inpu is the amplitude aistribution in 

angle of the wave field in tie object space, tae transfer function is the Fourier 

transform of tune aperture, represented by tie function a(x) or a(x1 , x2) in the two-

dimension'h case. 

The most general type of aperture function a(x) is a good deal more 

complicated than that considered on Page 1. It should be written 

a(x) = a1(x).ela2(") (5) 

where the functions al(x) and a2(x) are real functions of x. The function a1(x) 
represents tine amplitude modulation imposed by the aperture, and the function a2(x) 

tue pease modulation. The Fourier transform of this most general function can itself 

be calculated by ce use of the convolution theorem. It is a 

(x) 
.eia2(3~) 

.e  
Z TJtS 

dh 

This is again the Fourier transform of a pair of functions multiplied together, and 

the result is taaerefore tee convolution of the individual hoarier transforms. To 

find tine transfer function in amplitude for a general aperture, therefore, we must 

convolve tide Fourier transform of tae amplitude modulation function with the Fourier 

transform of the exponential of i times the pause modulation function. 

uefore concluding tuffs account of coherent-field illumination, it may be 

mentioned that tae idea of convolution is frequently of use in the culcu. .tion of 
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the Fourier transform of the amplitude modulation al(X) alone. Suppose the aperture 

consists of an array of identical slits; the amplitude modulation function al(X) is 

then the +convolution of t to function a(X) describing an individual slit with an array 

of 8-functions g' ving the arrangement of the slits in space. The r'ourier transform 

of al (X) is then the product of the Fourier trans  ;form of a(X) with tie ?uurier 

transform of the 8-function array he contribution of al( ;) to the transfer 

function is frequently easier to calculate by this method than by straightforward 

inteUation. 

1.2 ;apertures in incoherent illur inai ion. 

In radio astrono ay we are often concerned with incoherent wave-fields . The 

large number of point sources which may be hougut of as making up the emitting area 

of a radio source are not phase-co_erent. Although point-source (coherent) theory 

may be valuable in some applications, the extension of the above treatment to deal 

with incoherent wave-fields is of greater importance. 

"'aereas a coherent wave-field is linear in amplitude, so teat two different 

points may contribute disturbances whcA combine to produce zero intensity at an 

output, an incoherent wave-field is linear in intensity. Two different points always 

contribute the superimposed intensity, and interference can only occur between 

disturbances derived from one point in the wave field. It was shown. (eqs 3) that the 

point-source response in amplitude of an aperture represented by a(X) was the Fourier 

transform A(S), This being the response to an input which is a 8-function in angle, 

it is to be regarded as the amplitude transfer function for the aperture. The 

comparable function in incoherent wave field theory will be the intensity transfer 
function, which is clearly A(S) .A*(S), where the * denotes the complex conjugate. In 

the analysis of the radio star interferometers, the analogue of the "aperture 

function" a(X) will be required, mid t is will now be derived. 

This analogue will be called the intensity transmission function, end will 

be denoted by T(X). The one-dimensional case will be considered for reasons of 

simplicity in the working. The treatment of the two-dimensional case is strictly 

similar 

If A(S),A*(S) is the Fourier transform of T(X), then 
t•o 

2'ltiSX ( ) 

3ut A(5) = J r a(X) .e-27[i. .dx

Thus T(X) = f-do -.o T(X) * 
Sa(X~ ) .a*(X-x' ) .dx. 

Therefore the intensity transmission function T(X) for an aperture with 

aperture function a(X_) is tae self-convolution of a(X). This theorem is closely 

parallel to tae Diener-Yhineuine theorem for stochastic processes. The method of 

dealing with incoherent wave fields now follows clos ly that used for coherent wave 

fields, '1(X) replacing a(X), and A(S) .A*(S) replacing A(S) . 

A number of such self-convolutions will now be presented graphically. 



1.3 self-convolutions of some important functions. 

a) Rectangular aperture 

a(X) T(X) 

/~

7 

Circular aperture 

a(X) T(X) 

wo one-dimensional slits, in phase 

I 

r (y) 

 /\  \ A 

d) Two one-diaensionai slits, one 7t out of phase with other 

a(X) 

L~ 

T(X) 

\/ 

ue behaviour of a single aperture in incoi_erent it unzinution (1.3a) has 

the characteristics of a low-pass filter, the response to angular frequencies in the 

iuciden u.isturbance being greatest :ior 5 = 0. ( it should be noted that if we 

illuminate an aperture with a source having an intensity distribution p(X5), tree 

wave field in tike aperture, *(Xa) .**(Xa) is proportional to the iourier tren::form 

P(3) when the aperture is sufficiently far away from the s >urce. Thus when we 

considered above the response of an aperture to a point source having a 6—function 

for p(X3), the wave field at the aperture is represented by a function f(x) which 

is a constant, all spy±rte a•nnular frequencies being present in the incident 

disturbance.) In this respect the response of a single aperture to incoherent 

illumination is similar to the response of a low-pass filter to a random noise 

aignal, the output of the filter being taken through a square-law detector. 

sue shall now apply these theoretical ideas to the various radio 

interferometers mentioned at tuie outset, be ginn ling with the 2tiiichelson instrument, 

namel after to e originator of the cork esponciinY instrument in visual optics. 



2. Tk[ RADIO ICHI LSON (ST S,},AR) INTEI~1t'EROLi.r~l'ER 

2.1 BlocK diagram of the sj=stern 

`file radio analogue of the optical i.iciielson stellar interferometer 
consists of two small aerials separated by a large number of wavelengti,s at the 

observing, frequency and connected to a common input through lines of equal path 

length. Tile combined input is amplified, square-law detected and feci to an 
integrator and recoruer. L' ie arranemont is represented in clock form below i 

AJ RIAL 1 

AihiAL 2 

A LPi IFI.ER 
SQ.UARE LAW 
DETECTOR 

NT EGRAT'OR 

Radio -icnelson (Stellar) Interferometer 

2.2 Transform analysis of tae system 

CORDER 

The distribution of radio intensity across the distant star will lave 

the form of tie function in diagram a) t)eiow. As tile interferorceter is situated 

in effect infinitely far aavay from the star, tree distribution of int naity with 

separation of the aerials on the ii rt's surface is the distribution in angle at 

the star, i.e. tike Fourier transform of the function of Diagram a) . ThiS is 

reresented by uiagram b) . 

a) b) 

To determine the outJ)ut of the receiver, i.e. the form of tue tracing 

of a pen recorder as the star passes through the aerial be  due to the rotation 

of the Earth, we merely multiply the function in b) by the intensity transmission 

function of tle aerials. This is tae self-convolution of the aperture function, 

from section 1.2. If we consider tae idealised case where tie aerials i:lave a 

primary reeep tiion pattern w_}icu is coast nt over a small range of angles, but then 

falls immediately to hero outside this range, the aperture function is the a(X) of 

1.3 c), and talc intensity transmission function the T(X) of the same diagram. The 

output of tae receiver is the Fourier tran_form of the product of this T(x) with 

the distribution b), as drawn below 

n I' 

DISTRIBUTION AITH SPACING X TRANSFER FUNCTION 
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PRODUCT F.T.  OUTPUT 

It is seen that the output of the recorder consists of a D.C. level 

determined by the Fourier transform (in intensity) of one of the aerials (centre 

component of product fwiction), modulated by a component proportional to the 

riei.girt of tree intensit;; -separation function at the spacing of the sire -peaks in 

tie intensity transfer function of the interferometer. If therefore the aerial 

spacing is adjusted so that these side-pews correspond . itn the first minimum of 

tree intensity-separation distribution ( i.. o • the first zero of the intensity -angle 

distribution at the star), there is no modulation, Ant:. the output is U D.C. level 

given only by tue Fourier transform of the intensity transmission function of one 

aerial. This case is shown diagrammatically below s 

T(X) 

x 

i 

I 

4 A 

In order tnerefore to determine the an uiar diameter of a distant star 

with his nstrument, observations nave to be made using a range of ..erial spacings 

until an output is obtained that is simply the unmodulated ou~put of a single 

aerial. From tree spacing of tie aerials giving tais condition the first zero of 

the intensity-angle distribution at tie star is known, and hence tae angular 

diameter. It will be noticed that tine interferometer effectively s determines 

tie magniituae of tue Fourier component of the intensity -separation distribution at 

the Eartu' s surface corresponding to a sa atial periodicity eq,,.al. to the aerial 

spacing. 

3. The PHA E-Sf+I'TCui D (RYLE) I ~TriRF Or 'ER 

3.1 General discussion and oloc diagram 

The :iexxeison interferometer desoribeu above nas the disadvantage that it 
produces at the output a D.C. level containing no information about tue star under 
investigation, nis level being purely a propert, of the aerial elements w ich 
matte up tree irterferometer. The salient feature of tue Kyle interferometer is that 
tr.is level is removed, enabling much greater sensitivities to be obtained on tie 
output recorder, and also dis crimi nating gains b t_ e large isotropic ( roughly) 
amount of bacc~round radiation against wd ioh tie star will anyway be viewed. This 
background level is very slowly varying in angle as seen from tue Earth, and its 



significantly large Fournier coripolents are mostly confined to the range let 
through by he central peak in the intensity transmssion function of the 
Michelson interferometer. Thus the phase-switched system enables us to discriainate 
effectively between he staffs we wish to oaserve and fluctuations of &he (mostly 
Galactic) baciground emission. Tue only background fluctuations confusing the 
output of tue switched instrument are those with i'ourier components lying in the 
side-peals of tue intensity transmission f~mction. These are usually very small 
components as 7.ne background £S largely only slowly varying. 

Tile bloc. diagram of the system is given below, and the following 
discussion will snow that it does indeed remove the central peas (spatial frequency 
pass-band, as it might be trmed) from the intensity transxnisuion function. 

ABI1AL 1 

AERL 11 2 

~PLTr"Tr;R 
SYNCHRONOUS 
DETEC'OR 

NT1 GRATOR  _2LCORDER 

Block diagram of pease-switched stellar interferometer 

The two aerials are ere connected turougn equal path length cables as 
before, but an adaitional A,/2 of cable is r.apidl„ s„itched in and out of one 
path. a,}~C_xronously with this operation, the output of the detector is reversed 
(tue detector is a square-law detector as before), tue combined operation of 
detec pion and synchronous a it caing being included in the "'synchronous detector" 
o i tue Mock diagram above. 

3.2 Transform ana)jsis of the phase-switched interferometer. 

In the half-cycle of the switching waveform during Wati.ch the extra V2 

of path length is not included, the intensity transmission function of he system 

is the same as that of he A::ichelson interferometer Liscussed above. Iaa the other 

half-cycle, ho\zever, it takes tie form of diagram 1.3 d), as one aerial is i out 

of p:ciase with the other. Therefore we have 

Ut u h uJ2'-tjYvL 

OTHrtR k L?-CYCLJ 

Ivow, the 

1 
A 

APBI URi: FUNCTION a(X) INTEIdSITY TRANa3 ISSION FUNCTION T(X) 

1 

U 
AYEI3TUR' r'UNC'1'IUN a(X) INTENSITY TRAN;iLIIS`ION FsJNCTION T(X) 

operation of reversing the detector output synchronously Frith 

the s.ritcui ng waveform, and hen adding the results by an integration process with 

a tame-constant much longer than the frequency-period of the switch, dives rise to 

an effective intensity transmission function which is he difference of these two 

functions, .e., 

A
T(X) + - T' (X) = F i'E CTWB TR"aNSFER ?UNCTION 

It follows from the absence of tree central peak in this function that 
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the D.C. component appearing in tie output of the I&iohelson interferometer is 

absent from the output of this system. The aerial spacing at which the output 

of the interferometer is reauced to zero now gives the first zero in the Fourier 

transform of the source intensity distribution. 

It is no longer possible with this system to build up the Fourier 

transform of the source intensity by means of difIerent aerial spacings, as the 

Lichelson visibility criterion '.gas no meaning in this system, only the modulation 

and. not the ba~tkground 1) .0 level being present. The advantages of the system have 

been mentioned. above, however, and are described in considerable detail by Ryle 

("A new radio interferometer and its application to the observation of weak radio 
stars", Proc. Roy. soc. A, 211, 351, (195$) ) 

4. THE POST-!)r.PETGR (i ANBURY BROWN and Ta'ISS) INl'i ' ,RO;sE `LR 

4.1 General discussion 

In this interferometer use is made of the result that the correlation 
coefficient between the disturbances at two points in a wave field is re1.ted to 
the intensity distribution crow the source producing the wave-field in a 
Fourier transform mai,ner (the normalised correl pion coefficient eyua1.s the 
normalisea Fourier Transform of tue intensity distribution in the source, from 
the iener-Khinc trine Theorem, see "Correlation, Iisibility, and Coherence of 
shave Fields" , uniform with this discussion.), and the interferometer provides a 
means of measuring this correlation coef. icient fairl ' directly. The instrument 
has some important advantages, which are reviewed in t_e original paper by 
Danbury Brown and Twiss (Phil. Nag. mot , 663, 1954). In particular it is free from 
the effects of scintillations caused by the ionosphere, and connexion between the 
two aerials can be made bh/ radio link or by later analysis of synchronised 
recordings . 

The t`ro aerials feed separate amplifiers and square-law detectors, 
w is h are followed by low-pass filters. The outputs from these filters are in 
the first instance passed through linear detectors, in egrated and recorded, and 
also multiplied together, iutegrated and recorded she block dia ram follows 

AERIAL 1 

ABRIAL 2 

  LIFIE 
UARE 1 I 

ET'ECTOR 

4.2 transform analysis of operation 

LOW P.SS -_ 
?I EJTEi1 f 

y,ULTIP. 
1 
i 

LOW PASS  
FILTER 

LINEAR (  PEGRATOR 
DETECTOR ECORDER 1 

LL,EAR 
r,'ECT H 

NTEGt ATOR 
RDE 

T1'jT'EGRATOR 
OORDER 2 

°1'he output of each of the filters may readily be found, the intensity 

transfer fanction of a single aerial being described in 1.3 a) . The output of 

the filters is the s uae as the output of eac. of the recorders 1 and 2, and is 

derived as folios s : 

1 

9EPARAT ION INTENSITY 
DISTRIBUTION x TRANSII iION = PRODUCT P.T. 
AT EARTH FUNCTION 

RECORDER OUTPUT 
ON .SOURCE 
TRANSIT 
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Although tree use of two sei aratE receivers for tiie two aerials and 

subsequent square-law detection: has destroyed information about the absolute 

p bases of si€3nals arriving at tie two aerials, relative phase information 

remains, and to analyse the output of t,_e cress-product cr..::nne1 we must therefore 

deal with a "relative" intensity transmission function for each aerial. This is 

clearly tie intensity transmission function used above, displaced relative to the 

intensity-separation curve. As this latter is tree r'ourier transform of the source 

intensity distribution, its ordinate at any point corresponds to the value of the 

correlation coefficient between the wave disturbances at sampling points 

s pirated by the river. spacing. Eao.h of the aerials contributes a tern of tais 

iwid, and as is shown below, the output of one tunnel is the reflection about 

tthe centre position of tie output of tiie other (note that type separation of the 

two intensity transmission functions in the diagram corresponds therefore to 

twice the separation of the aerials in space) The opera.tian of multiplication in 

the multiplier unit and subsequent integration corresponds to convolving the two 

onanrhels in the Fourier transform representation, so to obtain the output of 

recorder 3 we convolve tae two product outputs :°itn one another and take the 

Fourier transform. 

(1 1 
!\ 

INTIN 1TY- EPARt ION 
CURVE ( i;ORRELA'T'ION 
COr.Er'ICI.EN'1' ) 

I 
s 

i 

A

A 
RIVE 

X I fiNSITY 
`1'RCttiSi IS lON 

:2 PRODUCT 1 convolved with PituDU 

2 

PRODUCT 

2 

= CONVOLUTION F.T. gives OUTPUT 3 

Tue symbol 
e 

denotes tue v .iue o_ tue correlation coefficient 

oetween the disturbances at trie two aerials for a ,riven separation. This is 

measured directly by the radio ihicnelson i.rterferohneter discussed in section 

2. The square of the normalised correlation coefficient is determined b t:is 

system if tae output of channel 3 is divided by tue s.  -;dare rot of the product 

of the outputs of cuanriels 1 and. 2. The correlation coefficient will obviously 

vanisn tirougnout tue entire transit of a source if the aerial spacing takes 

values such that tue relative intensity transmission functions sai J.e the 

intensity-separation carve at its minima, and so tue an.ular dieter of a 

source can be inferred. The intensity distribution at tue source cannot be 

found. uniquely from a set of eorrela;ion coefficients for different aerial 

spacings because phase information nas been lost (this also applies to the 

Ryle interferometer used as described above). The problem is somewhat similar 

to that of deducing a crystal structure from its Fourier transform when phases 

use 

not known. Assessments of tue relative merits of the various systems 

treatea .:were nave been shade in detwil in to literature of radio astronomy and 

will rho1 ue repeated L,ere. 



IV 

5. NOT1 3 AND COR1UQ NDA 


