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TRANSFORM THEORY OF RADIO STAR INTERFEROMETERS

In these notes the principles of three common types of radio-star
intereferometers in use in radio astronomy will be discussed using the ideas of
Fourier transforms in conjunction with the mathematical techniques of convolution.
The instruments to be treated are the radio Michelson interferometer, the phase-
switched (Ryle) interferometer, and the post-detector (Hanbury Brown and Twiss)
interferometer, sometimes referred to as the intensity correlation interferometer.
It is thought that the operation of these instruments is so clearly brought out by
a discussion in terms of Fourier theory that this approach is greatly preferable to
more immediately "physical" arguments.

1. BASIC THEORY
1.1 An aperture in coherent illumination

We begin with the Fresnel-Kirchhoff diffraction integral

ikr
¥, = -i- ‘[ g *Q.!’-:-{.;oos(n,r) - oos(n,rl)i. as (1)
s

which relates the disturbance of a scalar wave field ¥ at a point P to the
distribution of ¥ over any surrounding surface, Q being & point on such a surface.
Consider at first an aperture in one dimension ilduminated by a point source, so
that plane wavefronts arrive at the aperture from the object space. We wish to
calculate the distribution of signal in the image space, and will use the eguation
(1) for this purpose. The surface of integration will therefore extend over the
entire aperture plane, considered to extend to positive and negative infinities,
and also over a hemisphere of such indefinitely large radius that contributions to
'é from points on it may be neglected. If the sperture is considered to be in the
x dimension, we approximate its effect on the incident plane wave by writing for
tq the "aperture function" defined as a(x) = 0 for x lying outside the aperture,
and a(x) = 1 for x lying inside the aperture. This is equivalent to the first-order
perturbation calculation of quantum mechanics, for if the interaction of the
incident plane wave with the aperture were included to the full, a(x) would contain
terms describing the modification of the incident wave within the aperture. The use
of first-order perturbation only (known to optics as St. Venant's Hypothesis) has
been found to be adequate for most practical purposes. For the subsequent treatment
of radio imterferometers it is quite sufficient. We will furthermore observe the
variation in signal at points P in the image space whose values of r will all be
different. We make the approximation that the phase effect of r (exponential in r/A)
is very much more than the amplitude effect of r (inverse proportionalityd. We also
make the approximation that we deal in such small angle ranges that the obliquity
cosine factor is constant. We can then write

‘?P = %mijjs(x) 4
_429%2& a.(x).e""k(R - Xeblnd) oo

~D
where R is the normal distance from the aperture plane to the plane of observation,
and © is the angle to this normal. The factor eikR jg clearly common to all angles



© and can be included in the constant multiplying the whole expression.
Defining the notation

X = x/A S = siné (2)
the integral can be written o
*P = const. j‘u(x).e'gﬁixs.dx (3)

This is the basic result from which all the subsequent treatment will proceed. It
tells us that the distribution of signal in angle due to an aperture illuminated
by a plane wave (point source response of the aperture) is proportional to the
Fourier transform of the sperture function a(x), i.e. to the function A(S) in the
conventionazl notation for Fourier transforms. For a two-dimensional aperture, the
analysis can be carried through in an exaetly analogous manner to give

s, ,8,) = const. ”a(xl,xz) STULS, + i 4
= const. A(S 3 2)

If the aperture were supposed to be illuminated by a coherent wave
field giving a distrivbution £(X), then the signal distribution in angle would be
given by

«2NiXS

WP = consttuj‘t(x).t(x).e +aX

Now from the convolution theorem for Fourier transforms, we know that
the Fourier transform of a product such as a(x).f(x) can be expressed as the
convolution of the Fourier transforms A(S), F(5), i.e. as the function A(S){F(S).
Now we have from the general theory of transfer and reception that the output of a
system is the convolution of the input with a function representing the effeect of
the system. liere we see that, if the output is the amplitude distribution in angle
of the wave field in the image space, and the input is the amplitude distribution in
angle of the wave field in the object space, the transfer function is the Fourier
transform of the aperture, represented by the function a(x) or a(xl,xz) in the two-
dimensional case.

The most general type of aperture function a(x) is a good deal more
compliceted than that considered on Page 1. It should be written

a(x) = 8 (x).et22(¥) (5)

where the functions al(x) and & (x) are real functions of x. The function al(x)
represents the amglltude modnlation imposed by the aperture, and the function az(x)
the phase modulation. The Fourier transform of this most general function can itself
be calculated by the use of the convolution theorem. It is :

A(S) = g ﬁ(x) .eilz(x) -e'm.dx

This is again the Fourier transform of a pair of functions multiplied together, and
the result is therefore the convolution of the individual Fourier transforms. To
find the transfer function in amplitude for a general aperture, therefore, we must
convolve the Fourier transform of the amplitude modulation function with the Fourier
transform of the exponential of i times the phase modulation function.

Before conecluding this account of coherent-field illumination, it may be
mentioned that the idea of convolution is frequently of use in the caleulation of




the Fourier transform of the amplitude modulation al(x) alone. Suppose the aperture
consists of an array of identical slits; the amplitude modulation function sl(x) is
then the wonvolution of the function a(X) describing an individual slit with an array
of &-functions giving the arrangement of the slits in space. The Fourier transform
of a,(X) is then the product of the Fourier transform of a(X) with the Fourier
transform of the &-function array. The contribution of al(x) to the transfer
function is frequently easier to calculate by this method than by straightforward
integration.

1.2 Apertures in incoherent illlumination.

In radio astronomy we are often concerned with incoherent wave-fields. The
large number of point sources which may be thought of as making up the emitting area
of a radio source are not phase-coherent. Although point-source (coherent) theory
may be valuable in some applications, the extension of the above treatment to deal
with incoherent wave-fields is of greater importance.

Whereas a coherent wave-field is linear in amplitude, so that two different
points may contribute disturbances which combine to produce zéro intensity at an
output, an incoherent wave-field is linear in intensity. Two different points always
contribute the superimposed intensity, and interference can onlyAsccur between
disturbances derived from one point in the wave field. It was shown (eq: 3) that the
point-source response in amplitude of an aperture represented by a(X) was the Fourier
transform A(S). This being the response to an input which is a é-function in angle,
it is %o be regarded as the amplitude transfer function for the aperture. The
comparable function in incoherent wave field theory will be the intensity iransfer
function, which is clearly A(S).A*(S), where the * denotes the complex conjugate. In
the analysis of the radio star interferometers, the analogue of the "aperture
function" a(X) will be required, and tiis will now be derived.

This analogue will be called the intensity transmission function, and will
be dennted by T(X). The one-dimensional case will be considered for reasons of
simplicity in the working. The treatment of the two-dimensional case is strictly
similar.

If A(S).A#*(8) is the Fourier transform of T(X), then

+0

™(X) = -\f A(S).A*(S).cm.ds

But A(S) = Q‘fwa(x).e‘m.dx » j:(x').e'msx'.dx'

Thus B(X) = §§ a(x) as(8) e2LEXS g 4y

T(X) # .S*os(X').aﬁ(x-X').dX'

Therefore the intensity transmission funetion T(X) for an aperture with
aperture function a(X) is the self-couvolution of a(X). This theorem is closely
parallel to the Wiener-Khinchine theorem for stochastic processes. The method of
dealing with incoherent wave fields now follows closcly that used for coherent wave
fields, T(X) replacing a(X), and A(S).A*(S) replacing A(S).

A number of such self-convolutions will now be presented graphically.



1.3 Self-convolutions of some important functions.

a) Rectangular aperture
a(Xx) (X)

b) Circular aperture
a(x) : T(x)

E
¢) ‘Two one-dimensional slits, in phase
a(Xx) (X)

] o[ L

d) Two one-dimensional slits, one ¥ % out of phase with other
a(x) (X)

|

Y Y

The behaviour of a single aperture in incoherent illumination (1,3a) has
the characteristics of a low-pass filter, the response to angular frequencies in the
incident disturbance being greatest for 8 = 0. (It should be noted that if we
illuminate an aperture with a source having an intensity distriobution F(xs), the
wave field in the aperture, *{x‘).$*(x“) is proportional to the Fourier transform
P(S) when the aperture is sufficiently far away from the source. Thus when we
considered above the response of an aperture to a point source having a S-function
for p(xs), the wave field at the aperture is represented by a function £(X) whiech
is a constant, all =mpxkisk angular frequencies being present in the incident
disturbance.) In this respect the response of a single aperture to incoherent
illumination is similar to the response of a lowepass f{ilter to a random noise
8ignal, the output of the filter being taken through a square-law detector.

e shall now apply these theoretical ideas to the various radio
interferometers mentioned at the outset, beginnning with the Michelson instrument,
named after the originator of the corresponding instrument in visual optics.



2, THE RADIO MICHELSON (STELLAR) INTERFEROMELER

2.1 Block disgram of the system

The radio analogue of the optical Michelson stellar interferometer
consists of two small aerials separated by a large number of wavelengths at the
observing frequency and connected to a common input through lines of equal path
length. The combined input is amplified, square-law detected and fed to an
integrator and recorder. The arrangement is represented in block form below

=
AERIAL 1
_ . || SQUARE 1AW &
AMPLIFIER Roumanos Hmmnmon RECORDER
~ AERIAL 2
o

Radio kichelson $Stellar) Interferometer

BpR
242 Transform analysis of the system

The distribution of radio intensity across the distant star will have
the form of the function in diagram a) below. As the interferometer is situated
in effect infinitely far away from the star, the distribution of intensity with
separation of the aerials on the Earth's surface is the distribution in angle at
the star, i.e. the Fourier transform of the function of diagram a). This is
represented by diagram b).

[ - o,
L e v

a) b)

To determine the output of the receiver, i.e. the form of the tracing
of a pen recorder as the star passes through the aerial beam due to the rotation
of the Earth, we merely multiply the function in b) by the intensity transmission
function of the aerials. This is the self-convolution of the eperture function,
from section l.2. If we consider the idealised case where the aerials have a
primary reception pattern which is constant over a small range of angles, but then
falls immediately to zero outside this range, the aperture function is the a(X) of
le3 ¢), and the intensity transmission function the T(X) of the sume diagram. The
output of the receiver is the Fommier transform of the product of this T(X) with
the distribution b), as drawn below :

e P oen /\ /\ I A

N o T
DISTRIBUTION WITH SPACING X  TRANSFER FUNCTION =



VA AN
PRODUCT F.T. OUTFUT

It is seen that the output of the recorder consists of a D.C, level
determined by the Fourier transform (in intensity) of one of the aerials (centre
component of product funciion), modulated by a component proportional to the
height of the intemsity-separation function at the spacing of the side-peaks in
the intensity transfer function of the interferometer. If therefore the aerial
spacing is adjusted so that these side~peaks correspond with the first minimum of
the intensity-separation distribution (i.es the first zero of the intensity-angle
distribution at the star), there is no modulation, and the output is a D.C. level
given only by the Fourier transform of the intensity transmission function of one

aerial., This case is shown diagrammatically below 3
[ | ' |

) :

21

In order therefore to determine the angular diameter of a distant star
with this @nstrument, observations have to be made using a range of uerial spacings
until an output is obtained that is simply the unmodulated output of a single
aerial. From the spacing of the aerials giving this condition the first zero of
the intensity-angle distrioution at the star is known, and hence the angular
diameter. It will be noticed that the interferometer effectively kkm determines
the magnitude of the Fourier component of the intensity-separation distribution at
the Barth's surface corresponding to a spatial periodicity equal to the aerial
spacing.

3. The PHASE-SWITCHED (RYLE) INTERFEROMETER

3.1 General discussion and block diagram

The Michelson interferometer described above nhas the disadvantage that it
produces at the output & D.C. level containing no information about the star under
investigation, this level being purely a property of the aerial elements which
make up the interferometer. The salient feature of the Ryle interferometer is that
this level is removed, enabling much greater sensitivities to be obtained on the
output recorder, and also discriminating against the large isotropie (roughly)
amount of background radiation against which the star will anyway be viewed. This
background level is very slowly varying in angle as seen from the Earth, and its




significantly large Fourter components are mostly confined to the range let
through by the central peak in the intensity transmission function of the
Michelson interferometer. Thus the phase-switched system enables us to discriminate
effectively between the stars we wish to observe and fluctuations of the (mostly
Galactic) background emission. The only background f{luctuations confusing the
output of the switched instrument are those with Fourier components lying in the
side-peaks of the intensity transmission function. These are usually very small
components as the background is largely only slowly varying.

The block diagram of the system is given below, and the following
discussion will show that it does indeed remove the central peak (spatial frequency
pass-band, as it might be termed) from the intensity transmission function.

V2
REERS
2 WERE wRak S MO n
ST :
. SYNCHRONOUS | :
HAMELIFIER — Do on Hmmmvron ————'mconnm
3
AERIAL 2

Block disgram of phase-switched stellar interferometer

The two aerials are here connected through equal path length cables as
before, but an additional A/2 of cable is raspidly switched in and out of one
path. Sgehronously with this operation, the output of the detector is reversed
(the detector is a square-law detector as before), the combined operation of
detection and synchronous switching being included in the "synchronous detector"
ol the block diagram above.

52 ZIransform analysis of the phase-switched interferometer.

In the half-cycle of the switching waveform during which the extra /2
of path length is not included, the intensity transmission function of the system
is the same as that of the Michelson interferometer discussed above. In the other
halfecycle, however, it takes the form of diagram 1.3 d), as one aerial is ® out
of phase with the other. Therefore we have

ONE HALF-CYCLE H H /\
A A

APERTURE FUNCTION a(X) INTENSITY TRANSMISSION PUNCTION T(X)

OTHER HALF-CYCLE {]

v N
APERTURE FUNCTION a(X) INTERSITI TRANSMISSION FUNCTION T(X)

Now, the operation of reversing the detector output synchronously with
the switching waveform, and then adding the results by an integration process with
& time-constant much longer than the frequency-period of the switch, gives rise to
an effective intensity transmission function which is the difference of these two
functions, i.e.

A Z\ A A A A A

\

(X) - - T(X) = EFFECTIVE TRANSFER FUNCTION

It follows from the absence of the central peak in this function that



the D.C. component appearing in the output of the Michelson interferometer is
absent from the output of this system. The aerial spacing at which the output

of the interferometer is reduced to zero now gives the first zero in the Fourier
transform of the source intensity distribution.

It is no longer possible with this system to build up the Fourier
transforn of the source intensity by means of different aerial spacings, as the
Michelson visibility criterion has no meaning in this system, only the modulation
and not the bakkground D.C. level being present. The advantages of the system have
been mentioned above, however, and are described in considerable detail by Ryle

("A new radio interferometer and its application to the observation of weak radio
stars", Proc. Roy. Soc. A, 211, 351, (1958) )

4. THE POST-DETECTOR (HANBURY BROWN and TWISS) INTERFEROMETER

4+l General discussion

In this interferometer use is made of the result that the correlation
coefiicient between the disturbances at two points in a wave field is related to
the intensity distribution across the source producing the wave-{ield in a
Fourier transform meiner (the normalised correlation coefficient ejuals the
normalised Fourier Transform of the intensity distribution in the source, from
the Wiener-Khinchine Theorem, see "Correlation, Visibility, and Coherence of
Wave Fields", uniform with this discussion.), and the interferometer provides a
means of measuring this correlation coefiicient fairly directly. The instrument
has some important advantages, which are reviewed in the original paper by
Hanbury Brown and Twiss (Phil. Mag. 45, 663, 1954)« In particular it is free from
the effects of scintillations caused by the ionosphere, and connexion between the
two aerials can be made by radio link or by later analysis of synchronised
recordings. '

The two aerials feed separate amplifiers and square-law detectors,
which are followed by low-pass filters. The outputs from these filters are in
the first instance passed through linear detectors, integrated and recorded, and
also multiplied together, inbégrated and recorded. The block diagram follows 3

AERIAL 1 ,
' [ SQUARE LAW | {LOW PASS SLERAR ANTEGRATOR
¥ PMPLIFIER ["hompornoR | [PILTER R| BECORDER ] |

T e
> AMPLIFIER e LINEAR IITEGRATOR l
DETECTOR |
AERIAL 2
4,2 Transform sis of operation

The output of each of the filters may readily be found, the intensity
transfer function of a single aerial being described in 1.3 a). The output of
the filters is the same as the oﬁtput of eaci of the recorders 1 and 2, and is
derived as follows 3

7o L) b5 e

SEPARATION INTENSITY RECORDER OUTPUT
DISTRIBUTION x  TRANSMISSION =  PRODUCT F.I. ON SOURCE

AT BEARTH FUNCTION TRANSIT



Although the use of two separate receivers for the two aerials and
subsequent square-law detection has destroyed information about the absolute
phases of signals arriving at the two aerials, relative phase information
remains, and to anslyse the output of the cross-product channel we must therefore
deal with a "relative" intensity transmission funciion for each aerial. This is
clearly the intensity transmission function used above, displaced relative to the
intensity-separation curve. As this latter is the Fourier transform of the source
intensity distributidn, its ordinate at any point corresponds to the value of the
correlation coefficient between the wave disturbances at sampling points
separated by the given spacing. Bach of the aerials contributes a term of this
kind, and as is shown below, the output of one channel is the reflection about
the centre position of the output of the other (note that the separation of the
two intensity transmission functions in the diagram corresponds therefore to
twice the separation of the aerials in space). The operation of multiplication in
the multiplier unit and subsequent integration corresponds to convolving the two
channels in the Fourier transform representation, so to obtain the output of
recorder 3 we convolve the two product outputs with one another and take the
Fourier transiorm.

1'\6
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i {
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i : A Lo iy
\ | :
: : 2 : 2
P / i o~
INTENSITY-SEPARATION RELATIVE
GURVE ( CORRELATION X  INTENSITY =  PRODUCT
COEFFICIENT) PRANSHISSION
} G
t ! | Q
/ ' |
3
e A 5 AR

PRODUCT 1 convolved with PRODUCT 2 = CONVOLUTION F.T. gives OUTPUT 3

The symbol © denotes the value of the correlation coefficient
between the disturbances at the two aerials for a given separation. This is
measured directly by the radio Michelson interferometer discussed in section
2. The square of the normalised correlation coefficient is determined by this
system if the output of channel 3 is divided by the square root of the product
of the outputs of channels 1 and 2. The correlation coefficient will obviously
vanish throughout the entire transit of a source if the aerial spacing takes
values such that the relative intensity transmission functions sample the
intensity~separation curve at its minima, and so the angular diszmeter of a
source can be inferred. The intensity distribution at the source cannot be
found uniquely from a set of correlation coefficients for different aerial
spacings because phase information has been lost (this also applies to the
Ryle interferometer used as described above). The problem is somewhat similar
to that of deduecing a2 crystal structure from its Fourier transform when phases
ape not known. Assessments of the relative merits of the various systems
treated here have been made in detail in the literature of radio astronomy and
will not be repeated here.



5. NOTES AND CORRIGENDA
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