SEND TO: Director NRAO Edge DEADLINES: 15th of Mar., Ju Date: 13 March 1985 Title of Proposal: Low-bri	emont Rd. Cha une, Sept., 5 Ghtness fea	arlottesville, Dec. for Q 3, 4 atures of N	Va. 22901 1, 2 respect	Lively		
3 Authors		Institu	ition	Who will observe?	Observations for PhD Thesis?	Anticipate PhD Year
A.H. Bridle	NR	AO/CV				
R.A.Perley	NR	AO / VLA				
			, <u> </u>			
			<u> </u>		<u>.</u>	
		(
5 Contact author for scheduling: R.A.Pe Address: VLA	rley			Telephone: TWX:	:	:
 Contact author for scheduling: R.A.Pe Address: VLA Scientific category: Dplane Configuration(s) (A, B, C, D, A/B, B/C, C/D, Any) 	rley tary, □sola D	r, 🗆 stellar, []galactic, 단	extragalactic	:	-
 Contact author for scheduling: R.A.Pe Address: VLA Oscientific category: □plane Configuration(s) (A, B, C, D, A/B, B/C, C/D, Any) Wavelength (90 20 18 6 2 1.3 cm) 	rley tary, □sola D 20/6	r,⊡stellar,[]galactic, 🗹	extragalactic	;	
 Contact author for scheduling: R.A.Pe. Address: VLA Configuration(s) (A, B, C, D, A/B, B/C, C/D, Any) Wavelength (90 20 18 6 2 1.3 cm) Time requested (hours or days) 	rley tary, □sola D 20/6 24hrs	r,⊡stellar,[]galactic, 🗹	extragalactic		~
 Contact author for scheduling: R.A.Pe Address: VLA Oscientific category: □plane Configuration(s) (A, B, C, D, A/B, B/C, C/D, Any) Wavelength (90 20 18 6 2 1.3 cm) Wavelength (hours or days) Type of observation: ☑mappi □ spect 	tary, [sola D 20/6 24hrs ing, [point tral line, [source, 🗆 moni]galactic, []] 	extragalactic	poln, □cire	- - - poľn,

3**~**+

(13) Observing style: Will be p	resent 🗆 Will prepa return to	re files reduce	& 🗆 W	ill use	mode	m 🗆 P	b sentee (NRAO prepar sends calib	es OBSERV rated data	file &)	
(14) Reduction: Number of maps	212 Maximum	size of r	naps	51	<u>2, j</u>	~ 	Self-cal	maps <u>12</u>	P	rivate disk p	ack
(15) Off-site reduction: Inone, []post map,]post`c	alibratic	on, 🗌 e	verythi	ng.	۳ •	t.). t.).				
(16) Help required: Mone, □cons	sultation, 🗌 friend	(extensiv	e help), 🗍 st	ः aff∘_c	oļlâbo	rator.	3			
(17) Spectral line only:	line l line	2 .	line 3	و ۲۰۰۰ م	ri 1	•	3 K.		line]	line 2	line 3
transitions to be observed	[÷.		nu	mber	of cha	nnels (N)) _ · · · ·		·····	
channel bandwidth (KHz)(A) number of antennas											
observing frequency ($\pm N\Delta/2$)	<u>. </u>			(rm	s noi:	se aft	er 1 hour	r (mJy)			· · · · · · · · · · · · · · · · · · ·
18 Number of sources (If m	ore than 10 sources	please a	ttach 1	ist. I	more	tha n	30 give	only select	ion criteri	ia and LST ra	nge(s).')
Name	Epoch 1950 2000 RA Dec hh mm , +xx°x	Config	Band (cm)	Band width (MHz)	Total line (Jv)	Flux cont. (Jy)	Largest ang. size	Weakest signal (mJy/beam)	Required dynamic range	Possible LST range hh - hh.	Time requested
NGC6251 (3 Subfields)	16 36 +82°:-	D	20,6	50/25			30'/10'	~0.1	4000:1	any	24hrs
	*						**			5	
×										*	
) 											
· · · · · · · · · · · · · · · · · · ·											
	, ,	_						,			
								<u>د</u>			
				· · · · · · · · · · · · · · · · · · ·	<u>.</u>			Ŀ			
(19) Special hardware, software, o	r operating require	ients: ,		\ \				1	<u>, I</u>	d	
20 Preferred range of dates for s	scheduling: "			÷				े र	ેર ડૂર	ł	
21) Dates which are not acceptable	B: , ~	,	* *	•		·	ska I dri	*	• • • •		
22) Please attach a self-contained	l <u>Scientific</u> Justifi	<u>cation</u> no	ot in e	xcess o	f 100	0 word	ls.	r ž			
When your proposal is scheduled, i	the contents of this	cover sh	eet bec	ome pub	lic i	nforma	tion. (An	y supporting	g documents	are for refe	reeing only

NATIONAL RADIO ASTRONOMY OBSERVATORY Edgemont Road, Charlottesville

13 March 1985

> ir S

.с. С.

'ન √ુષ[ે

TO: Paul Vanden Bout

ä

FROM: Alan Bridle, Rick Perley

RE: Rescheduling of VLA D array observations of NGC6251

We wish to apply for rescheduling of the 'D' array segment of our proposal AP66 for mapping the low-brightness lobe features of NGC6251 at 6 and 20 cm with the VLA. This proposal was given time in the 'C' and 'D' array seasons in 1983 but the 'D' array observing was unsuccessful for operational reasons. To support the resubmission we attach the original proposal, and a map from the (successful) 'C' array observations.

AP66 called for 'C' array data mainly to define properties of the outer main jet, the counterjet and lobe fine structure, and 'D' array data mainly to define the spectral, polarization, and rotation measure characteristics over the extended lobe emission. We can 36 "piggybacked" an 18cm 'C' array run on a 28-hr VLB observation of 5 ¢ NGC6251 which used the VLA in phased array mode; Figure 1 shows a tapered map from this run, at 25" resolution. It clearly demonstrates (a) that the two jets share a distorted S-symmetry, (b) a that the counterjet is not a fainter replica of the main jet, but rather that the brightness ratio between the two jets changes with 1544 1 . * distance from the core, (c) that the "warm spot" in the west lobe shares the S-symmetry of the jet/counterjet system with a corresponding warm spot at a bend in the counterjet. The last ę... result increases the importance of examining the magnetic and spectral properties of the extended emission to the east of the warm spot in the counterjet (Figure 2), as it is now much clearer that 's the most easterly emission in NGC6251 breaks an underlying S-symmetry in the source. The 'C' array 6cm data (required for better signal to noise on the main jet than achieved in our *** published work) were also of acceptable quality for our present purposes. 3 IN X ..

Unfortunately, the 'D' array data requested in AP66, taken in June 1983, are almost entirely useless. The observing run was scheduled just as the BD IFs were being brought into use. Due to various operational problems, the new BD channels were brought up with no delays set, and the AC channel delays were improperly determined. The result was that only the parallel-hand data were useful at 6cm, while at 20cm no valid data at all were obtained. We therefore request rescheduling of the 'D' array segment of this proposal for 12 hrs in the next 'D' array season.

TABLE IA											
VLA OBSERVING PARAMETERS											
PARAMETER 1979 Nov 05 1980 Mar 31 1980 Dec 05 1981 Oct 05											

and the second

ORIGINAL PROPOSAL AP66

TO:	M.S.Roberts	in all M
	DAD.	Hadlering
FROM:	R.A.Perley and	A.H.Bridle

DATE: 4 October 1982

SUBJECT: Proposal to observe the low-brightness features of NGC6251 at 6 and 20 cm with the VLA in the C and D configurations.

We request the use of the VLA for 24 hrs in each of the C and D configurations to map total and polarized intensities of the counterjet and lobes of the large radio galaxy NGC6251. The proposal is the first of a new program intended to explore aspects of the source revealed by, or related to, our previous study of the bright jet in this object.

BACKGROUND

NGC6251 is a 14th-magnitude elliptical galaxy with a redshift of 0.023 associated with a radio source 1.1 degrees in overall extent. For H=75 km/s/Mpc the linear diameter of the source is 1.7 Mpc, making it one of the largest known radio galaxies. A high-brightness jet some 120 kpc long was discovered in the source by Waggett, Warner and Baldwin (1977). We observed this jet using the A configuration at 21 and 18cm, a hybrid (construction) configuration at 20 and 6 cm, and a D configuration "snapshot" at 20cm. The main results of these observations were:

1. Evidence that the jet may be interacting with a surrounding medium: it expands in several discrete steps, and exhibits lateral oscillations which are readily interpreted as Kelvin-Helmholtz instability modes of a confined jet.

2. Evidence that the surrounding medium may be an ionized magnetosphere of NGC6251: there are large and complex Faraday rotation gradients over the central parts of the source. These gradients cannot be due to thermal electrons and fields in the jet because there is no significant depolarization between 21cm and 6cm. Rather, the gradients, which are largest closest to the center of NGC6251, must arise in material between us and the jet but associated with NGC6251.

3. Detection in the D array snapshot of a weak counterjet whose intensity within 90" of the core is about 1/40th that of the main jet, but decreases to $\langle 1/250$ th that of the main jet further from the core. The reality of this counterjet is confirmed by a WSRT 610 MHz map at 50" resolution.

4. Mapping of the magnetic structure of the jet in detail: the projected field contains both parallel and perpendicular components, with deep field-parallel layers at the edges of the field-perpendicular configuration in the more expanded outer regions of the jet. There are also regions of oblique projected field which can be explained only if there are departures from axial symmetry in the internal structure of the jet.

These results will soon be submitted to the Ap.J. They raise questions about NGC6251 which we wish to explore using various combinations of frequencies and configurations, now that reduction and interpretation of the earlier data are complete. Some of the new observations require modes of operation or equipment not yet installed at the VLA; these will be requested as the VLA becomes capable of supporting them. This request is for the parts of the ongoing study which can be done now.

STUDIES OF THE COUNTERJET

We wish to determine the internal structure, collimation and polarization

properties of the counterjet, for comparison with those of the main jet. The counterjet is too faint and resolved to be detectable at A or B configuration resolution at 20cm, but is very clear in our D configuration snapshot at this frequency (Figure 1). We require a mixture of C and D configuration observations at 20cm and 6cm to examine its structure in both total and polarized intensities. * The symmetries of its expansion, brightness-width evolution, field configuration and Faraday rotation properties relative to those of the main jet are all potent tests of models for these quantities which depend on the existence of a gaseous halo around the nucleus of NGC6251. The ratio of brightnesses between the counter jet and the main jet as a function of distance from the core source is also an important constraint on theories of the jet/counterjet mechanism. We will combine C and D configuration observations of about 3 hrs duration at 21cm, 18cm and 6cm to address these matters.

THE OUTER REGION OF THE MAIN JET

The parts of the main jet beyond about 5' from the core (see Figure 1), are resolved out in our earlier high-resolution observations but only poorly resolved in the D configuration shapshot at 20cm. Important questions about the transition between the main jet and the northwest lobe cannot be answered using the present data sets. What is the path and brightness evolution of the jet as it enters the northwest lobe ? What is the magnetic structure in the region where the jet "ends", presumably sharing its momentum with the surrounding material ? Can the jet be traced continuously to the "warm spot" at the northwestern edge of the source, and what is the structure of this warm spot ?-The latter provides an indirect constraint on the jet velocity; if the jet does reach the warm spot, it presumably has sufficient thrust to overcome the internal pressure of the spot. We therefore require maps of the northwestern lobe with better resolution than at present, but with sufficient short spacings to sample and separate structural scales from 10" to 10' (see Figure 1). We need to combine C and D configuration observations at 20cm and 6cm of at least one more phase center along the probable path of the jet in the northwestern lobe.

ROTATION MEASURE AND SPECTRAL GRADIENTS IN THE LOBES

There is evidence from the Cambridge 151-1417 MHz observations of the lobe that the emission between the bright jet and the northwest warm spot has a spectrum similar to that of the jet, but that the more diffuse lobe emission away from the jet has a spectrum 0.5 steeper. Our data show that there is no significant spectral gradient along the jet and (from the brightness-width evolution) that particle acceleration continues for some tens of kpc along it. We wish to study both the rotation measure and spectral gradients over both lobes for comparison with the large RM gradients and negligible spectral gradients we. have established for the jet. The RM data will test our interpretation of the RM gradients in the jet - we expect very little RM gradient over the lobes if the gradients over the jet indeed originate in the inner regions of a magnetosphere of NGC6251. WSRT 610 MHz data show that the lobes are significantly polarized 1.7 and will be used for comparison with the VLA 20 cm observations. The C configuration observations will provide higher-resolution data for the more compact lobe features at 20cm for comparison with the VLA D configuration data at 6cm. They will also be used to measure the RMs of about five unresolved background sources which are viewed through the lobes.

The lobes of NGC6251 will also be a good arena in which to test the lobe magnetic field model of Laing (1980), wherein the field is sheared so as to be tangential to the surface of the lobe, with no radial component, but is otherwise random. To test this model quantitatively, we need to establish the projected

1

magnetic field direction over the lobe, and to check for depolarization over it. Previous tests of the model in M84 (Laing and Bridle, in preparation) met with different degrees of success on the two different sides of the same source; again in the presence of large-scale RM gradients believed to be associated with the parent object. NGC6251 is suitable for further tests of the Laing model, as its lobes are bright, two-dimensional structures over which the VLA can map many pixels. To determine polarization structure (with typical degrees of polarization of 20%), 1-hr integrations at 50 MHz bandwidth are required for several phase centers at 20cm. Due to the 1.1 degree size of the source, three separate phase centers are required for the northwest lobe, counterjet, and southeast lobe observations, even at 20cm.

TIME REQUEST

We request 24 hrs in each of the D and C configurations of the VLA for these observations. In the D configuration, we will spend about 1 hr at each of three phase centres at 20cm, and the balance of the time at 6cm. We will be able to specify the time and frequency distribution of the C configuration observations in detail only after the D configuration data are available, but presently estimate our requirement as 24 hrs mainly at 20cm. Due to the 83 degree declination of NGC6251, a single 24-hr run in each configuration is feasible.

REFERENCES

Laing, R.A. 1980. M.N., 193, 439. Waggett, P.C, Warner, P.J., Baldwin, J.E. 1977. M.N., 181, 465.

1...

From: VAX3::RICK 12-JUN-1983 16:00 To: CVAX::BRIDLE Subj: chagrin, embarassment, shame

I have just scanned our run from last night, and discovered the observe file had a crucial error. The A/C Fluke setting was 12.5 MHz too high, causing the 50MHz passband to contain only 37.5MHz width of data. Fortunately, this only occured on the calibrator 1803+784. All the observations of NGC6251 are all right, as are the observations of 3C48 and 3C138. It appears that only polarization calibration will suffer, and we'll probably be able to recover that from next week's run. I cannot explain how this happened. I used SOS to substitute 100.0 and 200.0 (the correct settings) for 112.5 and 212.5 (the old setting used for the C array data). All the 212.5 did change to 200.0 (hence, the B/C

oops, I mean B/D data are o.k.), however, only the 112.5 Fluke settings on cards of the source, 3C48, and 3C138 changed. Somehow, I goofed. Of course, the real error was in the lack of adedquate final checking, and for th I am truly sorry. I just hope we can recover the polarization calibration next week.

The operator said he saw no interference. I won't know for sure until tomorrow. I'll make a quick map, and let you know.

2

From: VAX3::RICK To: CVAX::BRIDLE

Subj: New observations

I used my two hours of test time to integrate on the following frequencies: 4885, 4835, 1665, 1515, 1485, and 1435MHz. All were pretty clean except 1435 MHz, which had a lot of sporadic RFI, and one scan which was completely blown away. Thus, I believe we should do the following for tonight:

11-JUN-1983 15:21

1) Observe the core at 4885/4835 MHz. No problem here.

- 2) Observe near the warm spot for 1 hour.
- 3) Observe the core at 1665/1515 MHz.
- 4) Observe the S lobe at 1465/1515 MHz.

In all cases, the more important/more reliable frequency is in the A-C channels. I thought that 2 hours on the core at 6cm, and 1.5 hours at each of the 20cm pairs (S lobe and core) plus the 1 hour at the warm spot should do.

I have been mulling over your comment about deferring the 6cm observations. Sounds good to me from an interference point of view. This (meaning tonight) is a night/weekend run, and much less likely to be zapped

Cancel the above argument which I didn't finish. The long run next week is a midnight run. Nevertheless, given the reliability of the 6cm observations, it makes good sense to test the waters at 20cm now, on a weekend. I'll make up the file at 20cm only, using items 3 and 4 above. I'll split the time equally between the two observations. Any comments? From: VAX3::RICK To: CVAX::BRIDLE

Subj: New observation

O.K. I'm at the site. It turns out that I have test time starting in one hour. I plan to tune to these new frequencies, and integrate for a while. Of course, I'll use NGC6251 as the object to integrate upon. The bug in filler which was ruining all the 4-IF data has now been repaired (turned out that 'the signs of the real and imaginary parts were being reversed), so I can properly calibrate the 2 hours of test data I took on blank sky a couple nights ago. This will tell us the best (i.e. least noisy) frequencies. I'll select the best (subject to careful reading of your comments from yesterday), and integrate on them for a while, to see if occasion RFT lurks about.

11-JUN-1983 10:04

More late. Call the operator to get me.

9-JUN-1983 10:13

From: VAX3::RICK To: CVAX::BRIDLE Subj: New obs, and B/D IFs.

The B/D ifs are here, and they seem to operate. I ran a few hours of tests to find optimal frequencies. The best contiguous frequencies are 1465 and 1515 MHz. An alternative good pair are 1435 and 1485MHz. These have the advantage of averaging close to 1465MHz, the old default frequency. We're observing on Sunday, so we need to consider which pairs we would like. At 6cm, virtually any frequency can be chosen. 4885 and 4835MHz seem to work well.

If, on the other hand, we choose to spread our L-band frequencies, I got good results on any frequency except those which overlap 1600MHz (an enormous internal birdie). I am not in favor of this, however, as we have previously selected (for C array) 'median' frequencies. Furthermore, the noise noticeably increases below 1400MHz. So, I think either 1465/1515 or 1435/1485 are the best bets. Any preferences? Note that the B/Ds seem to work, but there are a few bugs left, such as bad samplers, which seem to cause high closure errors on a few correlators. The situation is similar to the A/C situation a few years ago.

There is a serious bug either in Filler or Antsol which is causing amazing errors in Antsol listings. I am convinced, however, that it is a software problem, and not due to the 4 IFs per se. The data looks good.

As part of the Baars et al experiment that Pat Crane and I are taking care of (checking the Baars flux scale), we have gotten a fair amount of data on 3C274. My summer student arrived yesterday, and I decided to use this data to cut his teeth on the VAX. We got an impressive map of the halo. The remarkable thing is the evidence for rotation of the jet as a function of scale size. I'll send a copy of the map over the wire to you.

How's the review coming? Haven't heard from you in a few days.

For the Slobe, we used 1452.4 jer 1664.25

12-APR-1983 18:04

~

From: VAX3::RICK To: CVAX::BRIDLE Subj: RE: Misc. matters

The VLBers do phase the A and C if-s independently, but so long as they use the same antenna for both, and the true A-C phase of that antenna doesn't change, there should be no problem. The potential problem is that the stupid VLB program may take a different reference antenna each time it phases up. It has some criterion by which it decides which antenna is best, and this criterion or criteria does not account for phase jumps. If there were no phase jumps in any antenna, then changing the reference antenna won't hurt the polarization. The danger is in the phase jumps, and as we all know, phase jumps are rather common here. I don't believe there is any record of which antenna was taken as reference, and of course you know that most phase jumps are invisible to the monitoring system. By the way, self-cal also adjust A and C IFs independently, with no deletorious result to polarization.

The only way I can think of to check the behaviour is to list the AC phases for 1803+784. Pat put in three observations of this source for every observation of NGC6251. Fortunately, 1803+784 has quite a respectable polarization. We should be able to learn a lot from this. Keep your fingers crossed.

To bad about the glossies. Will bribes help? Interesting info about Jennison.

From: VAX3::RICK 11-APR-1983 15:11 To: CVAX::BRIDLE Subj: More N6251 Observations

Barry has tentatively scheduled our D-array N6251 observations for Sunday, June 19. Are you able to come for these observations, too? Given that we all leave for Italy shortly afterward, it seems reasonable to assume that you won't be able to come. I think it is also reasonable to presume tha at that time I'll be frantically working to complete my talk! I notice that you're not listed to give a talk at Bologna. Want some compact source data? Blowing hard today. New storm coming in.

*

(*) = 32" Dépler
$$n_e < 4 \times 10^{-3} \text{ cm}^3$$

 $g_j < 6.7 \times 10^{-30} \text{ kg/cm}^3 = 6.7 \times 10^{-24} \text{ kg/m}^3$
 $U_{min} \sim 5.4 \times 10^{-12} \text{ J/m}^3$
 $R_j \sim 1''.75, 0.75 \text{ kpc} \sim 2.31 \times 10^{19} \text{ m}$
 $A = \pi R_j^2 = 1.69 \times 10^{39} \text{ m}^2$
Hence $(5.4 \times 10^{12} + \frac{1}{2} \times 6.7 \times 10^{-24} \text{ N}_j^2) \text{ V}_j, \pm 69 \times 10^{39} = \frac{1.1 \times 10^{35}}{2}$
 $8.28 \times 10^{-8} \text{ N}_j + 5.14 \times 10^{-20} \text{ N}_j^3 = \frac{1}{2}$
If $\Sigma = 1.0 \quad 0.1 \quad 0.04 \quad 0.01$
 $\text{ N}_j = 2490 \quad 5710 \quad 7.850 \quad 12.450 \quad \text{ km/s}$
Heavy jet $\text{ N}_j < \frac{12000}{2} \text{ km/s}$
Heavy jet $\text{ N}_j = \frac{2690}{3\sqrt{2}} \left(\frac{6.7 \times 10^{-24}}{J_j}\right)^{\frac{1}{3}} \text{ km/s}$
Suppose we accept exponsion rate velocity $\text{ V}_j \sim 80500 \text{ km/s}$
 $\Sigma \sim 0.04$
 $g_j \sim 6.7 \times 10^{12} \text{ G} \text{ C} \text{ S} \cdot 32''$
 $\frac{1}{2}g_j \text{ N}_j^2 = 2.14 \times 10^{-10} \text{ J/m}^3 \text{ J} \frac{397:11}{2}$
 $\text{ Nomine } 5.4 \times 10^{-10} \text{ J/m}^3 \text{ J} \frac{37:11}{2}$

Ŷ,

Method (b). Exponent rate.
Method (b). Exponent rate.
If the period at
$$0.517^{\circ}$$
, $cM \sim 14 \approx thee.$ $M = cotorseci$
At $0 = 17^{\circ}$. form BCH fit, $\frac{1}{372} = \frac{0.25}{0.32} = 0.78$ $g_{17} = 5.2 \times 10^{-24} \text{ km/m}^3$.
Form equipartition $0 \approx 17^{\circ}$ Unit = 4.4×10^{-12} $3/m^3$.
pumin (using $\times 0.86$ fador) $\rightarrow 1.26 \times 10^{-12}$.
Then $C_{S} \cdot \int_{S}^{\frac{1}{2}} = \int_{-\frac{1.333 \times 1.26 \times 10^{-12}}{5.2 \times 10^{-12}} = 5.68 \times 10^{5}$ r/s
Hence $V_{j} = cMe_{S} = 14 \times 5.68 \times 10^{5} \text{ seci}$
NB Son fit isoif $\rightarrow cMed \text{ as } 5.4$
 $V_{j} = 3000$ km/s.

Method (c). Thrust balance

Warm spot in 50° 1446 MH2 snepmet
- beek I = 33.3 mJy

$$g_{0bs} = 1.8 \equiv 108''$$

 $\Theta = \sqrt{108^2 \cdot 50^2} = 96'' intrinsic$
Rus = 48'' $\rightarrow 20.6$ kpc = 6.35×10^{20} m
Hrune 0.7 index $P \sim 1$ MH2 $\rightarrow 1$ GH2 (Same Eraye as jet)
Bee $\sim 2.6 \times 10^{-6}$
Umi $\sim 6.18 \times 10^{-14}$
 $y_{1s} A_{15} = 0.86 \times 6.18 \times 10^{-14} \times T \times (6.35 \times 10^{40})^2$
 $= 2.24 \times 10^{28}$ Nt.
Momentum flux delivered to labe is $J_{15} \int_{12}^{17} J_{1} = \frac{1}{1 + \sqrt{16}} \int_{12}^{12} J_{1}$
 $A_{15} = 2.35 \times 10^{40}$
 $N_{15} = 1.69 \times 10^{6} (\frac{3.35 \times 10^{-15}}{3j})^{1/2} \cdot \frac{1}{5}$
 $M_{15} = 32''$
 $J_{15} = 6.7 \times 10^{-24}$
 $A_{15} = 1.69 \times 10^{6} (\frac{6.7 \times 10^{-24}}{3j})^{1/2} \cdot \frac{1}{5}$
So for $N_{15} = 8000$ km/s, new $G \sim 0.194$
 $J_{15} \sim 17$ SIGM at hat spot.
Problem SVR^{2}

Method (d)
If it's heavy
$$\frac{1}{2} S_j V_j^3 A_j = \frac{Llobe}{z}$$
 for energy balance
 $S_j g^2 V_j^2 A_j = \beta_{HS} A_{HS}$ $g = \sqrt{1 + \sqrt{\frac{P_j}{2}}} g_{IGM}$
 $V_j = \frac{2 Llobe}{\frac{g^2}{\frac{P_j}{2}}}$
 $= \frac{2 \times 1.1 \times 10^3 g^2}{2.24 \times 10^{29} g}$
 $\lesssim \frac{9820 g^2}{g} km/s$.

NGEB2SI on flow argument Vi 3 >1 2Llobe dhs lyr = 3.156×107 see 2 Mbit For Moor, Yeke Feber/Gellagher (ApJ, 204, 365 (1976)) Gas-eyeelin role from oud stars in E-gelery = 0.015 Mo/yr / (10° Lo) 1.2 10 MO. Absolute magnunde of NGEBEST. MBG) = -21.3 + 5.48 26.8 = 2.5 tos (4/20) ->: 5×101 Hence MANAA ~N&MO/yr 10" Mo available ~10-2 giling ? Th~ 1.3×10" yts Hifis Llose = 1.1×1035 Wetts dns = 16=960"= 412 upc = 1:27 × 10" K3 1.1×10 × 1.1.27×1022×2 V.Z V; = 52×105 Ex 2 × 10" × \$ 589×10 656 /12 km/s... The GXIO YAK V; > 1640 km/s - V; ~800 E=0.04, this T du/At \$ 32 mo/yr (box pers) Nore, and have lake over lose, d= 38" -> V: 73/38 x 520/512 694/35 Eils XE

What's the optimum set of parameters for heavy N6251?
We have various estimates:
1) Energy balance
$$V_{j} = \frac{2690}{3\sqrt{2}} \left(\frac{6.7 \times 10^{-24}}{J(32^{\circ})}\right)^{1/3}$$
 km/s
 $\Theta = 32^{\circ}$ $V_{j} = \frac{1400}{\frac{5}{2}} \left(\frac{6.7 \times 10^{-24}}{J(32^{\circ})}\right)^{1/2}$ km/s
3) Expansion $V_{j} = 8000$ Sec(i) $\left(\frac{6.7 \times 10^{-24}}{J(32^{\circ})}\right)^{1/2}$ km/s
4) Mars flow $V_{j} = \frac{520}{\sqrt{220}} \left(\frac{5 \times 10^{24}}{M_{ott}}\right)^{1/3}$ km/s
To balance energy and thrust we need $\frac{2690}{3\sqrt{220}} \sim \frac{1400}{5}$ roughly
 $\frac{J^{3}}{5} \sim 0.14 \Sigma$.
So con fin $\Sigma = 1$, g must be ≤ 0.52
This requires $g_{jcr} \gtrsim 0.9$ g_{TRM} .

۰,

To balance thrust and expansion we need

 $8050 \operatorname{sec}(i) = \frac{1400}{6}$ $g = 0.18 \, \text{cm}(i)$

This is much harder, and requires 9 < 0.18 1.e. Sj > 20 × SIGM !!

This is a big problem. It means we must have underedvince of pushes somehow, if it's in pressure equilibrium. Either the hot spor is for from equipertition, or we have got very bed parameters for it. AS vi ~ This, increasing vi by a factor 57 consponds to increasing his by a factor ~ 33. This hot spot is ~ '33 the purmue we would have expected. To belance energy budger and expansion

2690 ~ 800 seci 2~ 004 505³ 1

 $co^{3}n' @ 10' = 0.96$ $20^{\circ} 0.83$

This is the constraint we had in the dreft poper, with si = 0°. $\frac{360656}{0.3400i^{3} \sqrt{\xi}} \left(\frac{5 \times 10^{9} M_{\odot}}{M_{tot}} \right)^{1/3} = \frac{8000}{05i}$ Putting this in mans flow, $(0.24)^3 = \frac{1.4 \times 10^{-2}}{5 \times 10^9 M_{\odot}} = \frac{\Sigma_0 M_{tot}}{5 \times 10^9 M_{\odot}}$

So All XIO MO = & Mtot. - ejected mans. E~ 0.1 ? Most ~34.5×108 Mo. - friel available. Things would be much simpler if we had a value for \$45 A45 that was ~ 25 × greater. or if the jet had been decelerared? by a factor of five between the $\bigcirc ~227''$ region ad the hot spot. So if the scele is ~ correct, need $f'_{-}(1/25)$ $f_{-}0.0036!$ i.e. Here has to be something much smeller out there containing most of the flux?

Suppose we let
$$v_j = 8000 \text{ km/s}$$

 $\hat{z} = 0.04$
At $\Theta = 32'' \quad \frac{dm}{dt} = g_j v_j A_j = 6.7 \times 10^{-24} \times 8 \times 10^6 \times 1.69 \times 10^{39}$
 $= 9.06 \times 10^{22} \text{ kg/s}$
 $(1 \text{ Molyr} = \frac{1.989 \times 10^{30} \text{ kg}}{3.156 \times 10^{38} \text{ sec}} = 6.30 \times 10^{22} \text{ kg/s}) = 1.44 \text{ Mo/yr}$
 $\Theta = 227'' = 3.35 \times 10^{-25} \times 8 \times 10^6 \times 2.35 \times 10^{40}$
 $= 1.00 \text{ Mo/yr}.$

• ,

JIJU SIEM VHS ~ PHS Suppose we set JIAM ~ 10-26 kg/m3 $p_{HS} \sim 0.86 \times 6.18 \times 10^{-14} = 1.77 \times 10^{-14}$ then VHS = 1.8 × 1012 VHS = 1.3 × 106, or 1300 km/s. So there is no difficulty providing ran pressure for confinement at this deroity.

Synchrohon scelos. 5GHZ -> 3.5×10⁹eV Tsynch~ 3.79×10⁶yrs. Innerger Br 25 jugars At 8000 km/s, Tsynch is 9.57×10^{20} metreo ~ 3.1×10^{4} be = 31 kpc = 72''Outerjet B~7µgans 5GHZ Tsynch ~ 2.56×10 yrs. At 8000 km/3, ~> 6.46×102 mertes -> 2.1×10 pc → 488[°]. Therefore not surprising ther we see no specifiel grediers, as even if all SRA: particles had been generated at the control we could transport ken out at socialized slightly fearer then we age then due to spelvine lesses.

Deflection of NGC6251 jet.
Where angle Does it Seflect through?
Radius of anothere from the WTRT indep is ~10' ~ 600"
~ 257 kpc

$$T_{c} = 257 \times 3.08 \times 10^{15} \text{ m}.$$

 $v_{j} = \left(\overline{31000 \ r_{c}}\right) v_{3}$
Insorde the Jokpe scale ISM $v_{c} = \text{large!}(jut strongst)$
Dutside. $h \sim d_{jet} \sim 16^{10}$
 $v_{j} = v_{3} \frac{31000}{J_{j}} \cdot \frac{600}{16} \sim 6v_{3} \frac{31000}{F_{3}}$
Using one estimates, we have $f_{1000}/F_{j} \sim 3.7$. $v_{j} \sim 10.0v_{3}$
Divit know v_{3} , but indikely robe > 1000 km.s⁻¹
 $v_{j} \sim 10.000$?
I we used $h \sim jet$ diameter or $w cont. l = 96^{11}$
 $v_{j} = v_{3} \int \frac{f_{1000}}{J_{j}} \frac{f_{100}}{D_{c}} = 2.5 \int \frac{f_{100}}{J_{3j}} v_{3}$

Re your comments on the power spectra:

÷

τ.- · · · ~

Indeed the angle data generally give better spectra (in terms of significant peaks) than the deflection data. This is an important point, as it means that the deflections ARE growing with distance from the core, in general.

When estimating significance, it is important to compare spectra at the same resolution. The only spectra whose significance should be judged from the Gaussian-noise spectrum at the front of the ones I sent you are the 256-resolution spectra. The reason why the 0.19 r.u. peak in the first spectrum looked puny is because that was a 128-resolution spectrum. It looks o.k. compared with the noise spectrum at its resolution (which, of course, I didn't send you !).

I don't know what to make of the broader peaks. They usually resolve at higher resolution into numbers of smaller peaks. I tend to think we should look at the peak excursions from the LOCAL MEAN LEVEL in the power spectrum, in which case these broad peaks are not as significant. Certainly they correspond to "things" in the spectra, whether real oscillations or not, which are not simple harmonic in the way that naive Kelvin-Helmholtz modes would be. I have therefore focused more on the "sharp" peaks so far.

The coming and going of peaks as we vary the distance range is not surprising - I could pick some small distance ranges out of the data and really blow up individual spectral peaks - e.g. the 31" oscillation at the beginning of the "outer" jet. In general I feel happier about spectra which exclude the angle data from the first 10" or so from the core, where we have those very rapid oscillations that decay away. These are obtained by dividing very small deviations by very small distances, and I am suspicious about their reality. Pity we can't carry the errors in individual points through the power spectrum analysis. I do feel the spectra with the close-in angle data excluded are more trustworthy, though.

The "averaged angle" plots are from data where I first plotted all of our results at different resolutions on the same scale (as in the Figures for the paper), then drew an "average" curve through by eye. That curve was then read off every 2" along the jet to get the data whose power spectra were shown. This is o.k. over a limited range of distances from the core - otherwise the effective resolution of the data varies somewhat even though its angular spacing doesn't.

I'll do some more quantitative things regarding statistical significance, then get back to you with revised text and some more power spectrum examples.

I'm starting to revise the Discussion section now. One of the first things I looked at is whether the Chan-Henriksen model we fitted should in fact have "detached" from the confining pressure according to Bob Sanders' criterion. According to his power-law expression it should have done, but according to the detailed criterion (local expansion velocity becoming locally supersonic) it shouldn't. I think the difference lies in the fact that his criterion as given in his paper is in fact only ASYMPTOTICALLY correct. In the 'real' jet, the external pressure changes before the jet has had TIME (distance from the core) enough to detach. I am therefore happier about our use of the CH model than I was when I talked to you from Queen's, but will look into this some more. What is clear is that if the nozzle was somewhat lower than we have modelled it, the jet might have detached time we hit it with the "halo" pressure - generating the reconfinement shocks that Bob's paper was basically about. More to follow as I think it through and do a small number of further sums.

I got a letter from Jean-Luc Nieto with preprints of his NGC6251 paper, which has been rejected once. His pictures certainly don't show very much in the form he sent them to me, but he says he has some more observing time coming up soon, and we will keep in contact.

r

More ski holidays, eh ? Enjoy it while you can !

~

1

From: VAX3::RICK To: CVAX::BRIDLE Subj: n6251

I have received your message, and am about to print the new version. I have looked over the deflection spectra and must confess that I'm a little worried about the changes in the significance of the peaks. For example, in the second plot (1.3" data, all distances), do we consider the broad peaks at 0.33 and 0.45 reciprocal units significant? They (especially the former) are almost as significant as the marked peak at 0.19 units (5.8"). Furthermo comparing to the Gaussian noise plot above, none of the peaks seems big enoug Use of 256 resolution does seem to help, though as the next plot (#3) does seem to enhance the "proper" peak at 0.19 r.u. (reciprocal units). Looking through the remaining plots, I notice that the last three (all at 2" separation) show interesting differences. The second of these shows a semisignificant peak at 0.32 r.u. This peak also shows up in the first of these three plots, although at a lower level. However, the last of these plots has no trace of said peak - in fact, there's an enormously deep trough! It seems that restriction of the range has made a great difference. This last plot is by far the most convincing in terms of the significance of the various peaks we have previously identified. By "averaged angle", do you mean that the points are averages of nearby measured values?

3-FEB-1983 16:00

It seems to me that the angle data gives a better spectrum than the deflection data.

t,

TORICK S 4683

Some further power spectrum thoughts -

I tried a set of different Gaussian random number streams, each 100 points long, with the power spectrum analysis program at 256 resolution. All of them gave basically similar "phoney peak" statistics. Features of width several channels and peak amplitude five or more times the average of surrounding channels cropped up about five times per spectrum. Similar features with peak amplitude seven or more times the average of surrounding channels cropped up once per spectrum. We could therefore be pretty sure of anything that was as much as eight or nine times the surroundings, very sure of anything ten times the surroundings. I'll go through my individual 6251 spectra now and see which ones survive the test.

They're forecasting snow here now. We shall see.

TEST Book No. of Books bject Section NGC 6251 X-ray luminosity [from Bill ku's 22,000 of Einstein IPC data] Z = 0.023, $H_0 = 75 \text{ km/s/Mpc} \rightarrow D = 92.4 \text{ Mpc} = 92.4 \times 10^6 \times 3.0856 \times 10^{18} \text{ cm}$ $= 2.853 \times 10^{26} \, \mathrm{cm}$ "Nuclear X-ray source is 1.4 × 10⁻¹² erg/cm²/sec [0.5-4.5 keV] - IPC. $L_{x} = 1.4 \times 10^{-12} \times 4\pi \times \left[2.853 \times 10^{26}\right]^{2}$ = 1.4 × 1042 erg/s. Halo is $\leq 15\%$ = 2.1×10⁴¹ erg/s. (~5' radius), i.e. ~ 154 kpc radius. Minimum jer prevance = 0.86 peq, hence nomin = 0.86 neg for confinement, given T Lmin = 0.74 Leg - - - $T = 4 \times 10^7 K$ Taking our old "hab' values $L_{X} \underset{\text{within 50 kpc}}{\text{ by } 1.5 \times 10^{42} \text{ erg/s.}}$ Angular resolution of IPC is: 35" for 205-4.5 keV, i.e. 42 kpc. Hence their "nuclear sonne" is our core + some halo. Q. How much of our halo is well inside IPC "beam" ? of M87 ~ 1.5×1043 erg/sec

Table 4 0.5-4kel luminosity and mass of media required to compine NGC6251 jet Assumed isothermal temperature 2×10 K 10⁷K 4×10 K "HALO" Lx 2.0 × 1042 6.7×1092 1.6×1043 ergls M 1.8×10" 7.1×10 3.6×10" `₩O " $L_{X} = 7.0 \times 10^{43}$ M - 1.9 × 10⁹ 2.3×1044 5.6×1094 ergls "CORE" 3.8×109 7.6×109 WO. 90% of the predicted X-ray Ruminosity would onginele within 50 kpc of the center of NGC6251 for the "halo" component, and within 1 kpc for the "Core" Component / Divide Cuminovilles by 1.352 -M87- 1.5×1045

Mass in the besic RM medium. ARM ~ 70 ma/m² across L~70"~ 30 kpc. So: RM = 8.1×105 × ne × 10-6 B_L × 30 × 1000 $n_e = 0.00288 \text{ cm}^{-3}$ Je = nemp ~ 4.818×10⁻²⁴ kg/m³ $M = \frac{4}{7} \pi F_e R^3$ = $\frac{4}{3} \times \pi \times 4.818 \times 10^{-24} \times (3 \times 10^{4} \times 3.0857 \times 10^{16})^{3}$ $=\frac{1.60 \times 10^{40}}{B_{-6}}$ kg $= \frac{8.0 \times 10^9 \text{ M}_{\odot}}{\text{B}_{-L}}$

27 September 1982 Check Rick's DRM Limit to ne. Teke @~240" ARM < 5 rad/m2 Bee ~ 9×10-6 ganss ⊕ ~ 14' ~ 6000€ RM = 8.1×10⁵ Ne (cm-3) B (gamss) Lpe rad/m² Ne < 5.1×10 × 9×10 × 6000 < 1.1×10-4 cm3 If BIN BI ~ Beg! Try actual CH config. ? (1) = 227" From the CH fit, FWHM of convolved jet = 42.4 + 27.7 = 70.1 units normeliscrion of compute units is 70.1 × 13".4 × 0.429 kpc 0.082 kpc/cell = 82 pc/cell Now but Beg ~ $\sqrt{\overline{B}_{CH}^2 + \overline{B}_{Vand}^2} \sim (\overline{2}\overline{B}_{0}^2 + (0.35\overline{B}_{0})^2)$ 0.61 Bo = 9×10-6 gauns Bo = 14.7×10 gams. 8.1×10⁵ Ne (cm³⁾ × 0.04 × 14.7×10⁻⁶ × 82 Hence. ROT = 39.05 Ne ROT = 0.0015 = 1.9 × 10⁻⁴ cm-3

Out at :0~227 2×10³ [from the prevouve curve fit to confirement] Net Ne~ 2×10-4 T~3×10-1 $\sim 6 \times 10^{-5} \text{ cm}^{-3}$ [we used this for $\theta = 240^{\circ}$]. Rick's Fared. est is < 1.4×10⁻⁴ cm⁻³. [or]. Fom the equipartition sun, net~ 1×10⁴ infile knots., ~ 2 higher ?. Ne~ 3×10-4 cm-3 Correct to minimum from the "min. purs. cylinder" celantation [Owen/Burns]?

19 Aug 1982

Analysis of JEFFIX output on "NGC6251" []=32".

The parameter we specify is ROT
FARAD = ROT * NCO * BPARL * W/COSI (radians).
i.e. It is the Faraday depth of a cell 1 unit thick

$$n_e = n_e (max)$$

 $B = B_R (max at edge st jet)$
All fareday depths then scale to this.
ROT = $8.1 \times 10^5 n_e(cm^{-3}) \lambda^2_{metros} B(gauss) [Lengths along 1.0.5. in pc]$
Cellwidth $W = 4 R/(2NL - 1)$ Now NL = 1301
 $R = 60$
 $W = 0.0922$ 1301 of them \rightarrow total depth of 120 /
Now from the CH fit, FWHM of convolved jet = 47 + 49 = 36 units
i.e. the normalisation here is that compute units are $\frac{1}{36} \times \frac{3.75}{15} \times 0.429$ kpc
 $= 0.01676$ kpc
 $= 16.76 \text{ pc}$
Now put Beq $\sim \sqrt{3c_1^2 + 8c_2} = \sqrt{(\frac{1}{2}B_0)^2 + (0.75 B_0)^2}$
 $= 0.90 B_0$
 $Beq = 2.4 \times 10^5 gauro.$

Then here
$$ROT = 8.1 \times 10^{5} n_{e}(cm^{-3}) \times 0.04 \times 2.67 \times 10^{-5} \times 16.76$$

= 14.5 n_e.
Hence $ROT = 0.02$ $n_{e} = 1.38 \times 10^{-3} cm^{-3}$ $37\% \rightarrow 10\%$ over profile
 $\Delta PA = 23^{\circ} \rightarrow -17^{\circ} = 40\%$
= 0.04 $2.75 \times 10^{3} cm^{-3}$ $37\% \rightarrow 1\%$
 $\Delta PA = 28^{\circ} - 34^{\circ}$ 61°
[beginning of the first bonnee]
= 0.06 $4.13 \times 10^{-3} cm^{-3}$ $32\% \rightarrow 7\%$
 $\Delta PA = 57^{\circ} - 66^{\circ}$ 123° !
[well-developed bonnee]
= 0.10 $6.89 \times 10^{-3} cm^{-3}$ $All < 20\%$
This is not seen $\Delta PA = 470^{\circ}, -90^{\circ}$ hnsy $1b0^{\circ}$!!

If we had used Criffi + Jones (1980) we would have Concluded that for D>0.8 we would need Fc 52.6 i.e., in their units 2fR < 2.6 $f = 1600 \text{ ne } B \lambda^2 \text{ mo}/m^2/\text{kpc}$ <u>ie</u> 1600 ne B λ^2 . (161) < 2.6 $-ne < \frac{2.6}{1.61} \times \frac{1}{24 \times 0.04} \times \frac{1}{1600}$ < 1.1×10° cm⁻³ ³** a - an and a star a st n a sea anna an sua anna an sua an ,≠ av at at a a a a

Suppoe we had done it from the sleb model as for NGC315 in Willis eral. (1981). - --- ---- $D \sim \frac{\lambda_z^2}{\lambda_i^2} \frac{\sin(Rm\lambda_i^2)}{\sin(Rm\lambda_z^2)}$ - - - - $RM = 8.1 \times 10^5 n_e(cm^{-3}) B(gamss) L^{-bc} red/m^2$ We want D > 0.8 (say). $\lambda_2 = 6 \text{ cm}$ $D = 9 \times 10^{-2} \frac{\sin(\text{Rm}\lambda_1^2)}{\sin(\text{Rm}\lambda_2^2)}$ If then $RM = 8.1 \times 10^5 \text{ Ne} \times 2.4 \times 10^{-5} \times 1610 = 345 \times 10^4 \text{ Ne} (\text{cm}^{-3})$ Then_ ne = 10 + > RM = = 1.81 D=1.00 D = 0.92ne= 10⁻³ → RM = === 18.1 16×10-3 So we would have concluded that D20.8 needs RM = 28.4 $n_{e} \geq 2^{2}$ This would be ~ it less than we got from the randomized CH sum. If we used ne = 4×10⁻³ cm⁻³ here, we would ger RM = 125.2 <u>D = 0.2 ||</u> ىنى چېرى<u>ىنى كەرىپى بىرىنى بىر</u> s مر معرف م

_ Conclude from these simulations that ne (32") < 4 × 10⁻³ cm⁻³ $We use = n (240") = 6 \times 10^{-5}$ $\rightarrow n(32") = 26.5 \times 6 \times 10^{-5}$ from BCH relives $= 1.6 \times 10^{-3}$: we are OK for Hardee. ----ef. Slab approach n < 10-3 Cioffi/Jones n < 1.1 × 10⁻³ ------مر و و و و و مانچه مستقدار در در این وروز میکرد. مربقه مستقدار در این وروز میکرد میکرد.

D= 92.4 mpc x = 0.7 10M42 -> 1064:

NGC 6251 1. 30 Kovention 1662 MHZ VAX - fitted slice parms

(1	2	Cal	1	6181-12
	~	1	.80	Real	0
1		44	45		1
Contraction of the second		-	arrest to be a	to-tal-tenate	CONTRACTOR SUBSCIE

Strice 0 ⁽¹⁾ Tow $\overline{\Psi}(1)$ $\overline{\Psi}_{0}$ $\overline{A}(1)$ \overline{Beag} $Umin$ nT_{10} 1 0 H 49 H481: 64 -0:00004 -0:013 2 1.1 6(7) H421: 65 -0:0004 -0:013 3 2.2 3009 1.093: 4.22 -0:013 -0:013 5 4.4 3:1 1.65: 1.22 0:020 -0:111 5 5.5 4.60 -1:1 1.65: 2:0:05 -0:013 6 5.5 2.06:5 2:0:05 -0:11 -0:4:03 2:1:4:4:0 10 0.9 1:55 2:0:05 -0:0:14 -0:3:33 2:5:7 -1:4:4:0 11 11:0 2:3:4 1:1:0 -0:4:03 2:5:5 4:0:0* 1:4:4:0 12 2:1:1 1:2:1:1 1:2:1:1 1:4:0* 1:4:0* 1:4:0* 13 13:2:1:2:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1	(VAX-	fitted s	ilice parms	(×).8	6-1 p	7-316
1 0 419 1.4132.04 -0.0004 2 1.1 617 1.4392.05 -0.0023 3 2.22 3.089 1.500.233 -0.073 5 4.4 3.2 2.83 1.3844.32 -0.073 6 6.5.2 4.80 1.617 -0.073 7 6.62 4.82 1.434.29 -0.0128 7 6.63 4.74.17 (0.69) -0.128 7 6.62 4.64 1.55 2.042 -0.0128 9 9.5 1.67 -0.415 2.4.5 5.64.0 ¹⁶ (1.424.0) 9 9.53 1.67 -0.415 2.6.7 1.424.0 10 11.60 2.34 1.882.41 1.51 -0.0415 2.6.7 7.12.0 ¹⁶ (1.29.0) 14 4.3.3 3.32 2.01 -0.256 2.6.4 7.5.0 ¹⁶ (1.29.0) 15 15.4.7 2.51 2.422.37 2.64 -0.217 2.1.7 4.4.4.6 ⁷ (1.29.0) 16 16.5.4 1.62.4.62 2.66 -0.217 2.1.7	SLICE	⊖(")	miy Inex	<u>(")</u>	Φo	∆(")	Bear	Umin	nTeg
2. 1:1 6:17 1423: 05 -0.0025 3. 2.2. 3:09 1:39:1.32 -0.073 5. 4.4. 3:2.1 1:39:1.32 -0.073 5. 4.4. 3:2.1 1:39:1.32 -0.073 5. 4.4. 3:2.1 1:43:1.22 -0.073 7. 6.6. 3:4.4 3:2.1 1:43:1.22 -0.073 7. 6.6. 3:4.4 1:53:1.22 0:90 -0.11 8. 7.7 1:42:1.5 1:0.4 -0.442 2:4:5 5:5:4:6"#:1.4:4:0 10 9.9 1:55 2:0.4:57 -0.444 2:4:5 5:5:4:6"#:1.4:4:0 11 11.0 2:3.4 1:3:2 2:1:7 -0.442 2:4:5 5:5:4:6"#:1.4:4:0 12 12 1:4:3:1:3 2:1:3:3 2:0:1 -0.256 2:0:4:1 1:4:1:0 13 13:2 2:1:3:3 2:0:4 -0:359 -0:1:7 1:7 4.4:1:0"1:9:10 14 14:3:3:3:1 2:1:4:2:53 3:0:4 -0:3:5 -0:1:6:3 -0:1:1:2 -0:1:5	1	Ő	410	1.413 ± . 04		-0.0004			7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1.1	61.7	1.429 + 05		-0.0028			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	2.2	3089	1.510 + .33	-	- 0.036			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	3.3	283	1.3841.32		-0.073			-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	4.4	3.21	1.43 ±.29		-0.173			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	5.5	4.40	1.47 ± 17	(0.69)	-0.128			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	٦	6.6	3.49	1.58 1.22	0.90	-0.111	· · · · ·		1
9 9:8 1.02 1.63 27.3 $e 24.3$ 5.5 1.6 $e 1.4xx$ 10 9.9 1.55 2.04± 5.0 1.6 $e 1.4xx$ 24.5 5.5 1.8 1.4 1.4 1.4 24.5 5.5 1.8 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 2.3 2.0 -0.359 2.7 7.7 7.8 1.9 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 <th1.1< th=""> 1.0 1.1</th1.1<>	8	.7.7	1.67	1.63 ± 52	0.98	-0:266			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	8.8	1.02	1.68 ± .7	7 1.06	-0.408 77.2	a 7.4.3	5.5×10-12	1.4×1C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(0	9.9	1.55	2.04 = 50	11.57	-0.414	24.5	66210-12	141.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	11.0	2.34	1.88 + 41	1.36	-0.383	287	772/02	19410
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	12.1	2.93	1.99+.3(0 1.51	-0.415		1.14.0	1. 1. 1. 1.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	13.2	3.32	2.39 + .34	2.01	-0.256	18.A	7.5×10-12	Lavin
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	14.3	3.13	2.31+.30	1.01	-0.350	10.4	1.5410	1.24.10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15	15.4	2.51	2.47 ± 37	2.04	-0.765	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	16.5	1.84	3.14+.61	2.86	-0.217	21.7	1 4-41-12	11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	17.6	2.69	3.30	3.03	-0.087		4.4.10	1.1 × 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	10.7	3.19	3 68	2.24	0.335			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	19.8	3.29	3.37	3.11	-0.333			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	20.9	3 12	2.10	2 88	0 490			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(21	22.0	3.47	310	7.81	-0.485			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 22	22.1	2,83	2.32	2 05	0.902			•
24 25 3.75 3.76 7.79 -0.185 25 26.4 4.03 3.05 2.16 -0.290 27.4 7.0×10^{-12} 1.9×10^{2} 26 $2.6.4$ 4.03 3.05 2.16 -0.290 27.4 7.0×10^{-12} 1.9×10^{2} 21 $2.5.6$ $2.3.1$ 3.16 2.68 -0.328 -0.328 27 $2.5.6$ $2.3.9$ 3.13 -0.486 -0.250 2.4×10^{-12} 1.9×10^{-12} 29 29.7 $2.3.6$ 4.27 4.07 -0.234 -0.250 2.4×0^{-12} 1.4×10^{-12} 30 31.9 3.18 3.42 -0.264 -0.264 -0.264 -0.264 -0.264 -0.264 -0.5264 -0.5264 -0.5264 -0.5264 -0.5533 -0.533 -0.533 -0.533 -0.533 -0.5777 -0.60777 -0.978 16.1 2.4×10^{-12} -0.5777 35 $3.1.4$ 1.97 4.43 -0.9777 -0.972 -0.977 -0	22	24.7	3.94	3.02	2.62	- 0: <u>2</u> 93			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	25.2	200	2 00	2.70	-0.165			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	26 4	4.03	2.05	2.71	-0.155	27 1	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	20.9	2.21	3.00	2.00	-0.290	4 1.44	1.0×10-	1.3×10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	75	201	2.45	2 20	2.00	-0.525		·	
29 29: 1 25: 4 24: 1 -0.234 29 30: 5 2.72 3.82 3.59 -0.259 30 31: 9 3.18 3.69 3.45 -0.250 $24 \cdot 0$ 5.4×10^{-12} 31 33: 0 2.70 3.66 3.42 -0.304 -0.263 32 34.1 1.93 4.30 4.10 -0.263 -0.190 33 35.2 2.10 4.09 3.88 -0.533 -0.524 34 36: 37.4 1.67 4.44 4.21 -0.524 -0.998 16.1 2.4×10 ⁻¹² 6.1×10 ⁶ 35 37.4 1.67 4.43 4.44 -0.533 -0.977 -0.190 -0.11×10 ⁶ 36 37.5 1.10 5.02 4.65 -0.977 -0.514 -0.1×10 ⁶ 37 33: 40: 7 1.16 4.43 4.44 -0.539 -0.1×10 ⁶ -0.1×10 ⁶ 36 40: 7 1.16 4.53 4.44 -0.922 -0.214 -0.214 -0.214 -0.214 -0.214 -0.214 -0.2	20	20.7	7.20	5.55	1.00	-0:454			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	22.6	2.50	4.21	2 (0	-0.234			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	30.3	2.0	3.84	3.55	-0.259	<u>.</u>	- 4 12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	23 0	2.12	5.67	2 4 3	-0.250	24.00	5.4×10 -	1.4×10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		24.1	102	3.66	5.46	- 0.304			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	26.0	1.93	4.30	4.10	-0.263			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		55.2	2.10	4.09	3.88	-0.190			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		36.5	1.91	4.41	4.21	-0.504			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	51.4	1.6.1	4.05)	3.88	-0.533			16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	38.5	1.10	5.02	4.85	-0.998	16.1	2.4×10-	6.1×10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	39.6	0.918	4.23	405	-0.977			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	353	40.7	1.16	4.63	4.44	-0.839			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	41.9	1.15	5.35	5.19	-0:701			
41 44.0 1.02 4.53 4.34 -0.922 42 45.1 1.38 5.03 4.86 -0.478 43 46.2 1.64 4.19 4.61 -0.408 44 47.3 1.65 5.05 4.85 -0.561 44 47.3 1.65 5.05 4.85 -0.276 45 48.4 7.56 4.56 4.37 -0.219 22.4 4.7×10^{-12} 1.2×10 46 49.5 3.05 4.41 4.21 -0.219 22.4 4.7×10^{-12} 1.2×10 47 50.6 2.34 4.84 4.66 -0.14% 48 51.7 1.75 5.39 5.23 -0.229 49 52.6 1.23 5.30 -0.312 49 52.9 5.39 5.23 -0.697 49 52.9 5.36 -0.697	40	42.9	1.11	4.15	4.57	-0.625			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	44.0	1.02	4.55	4.34	-0. 922			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	45.1	1-38	5.03	4.86	-0.478	•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	46.2	1.64-	4.19	4.61	-0.408			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	94	47.3	1.65	5.05	4.55	-0.361			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	48.4	2.56	4.56	4.37	-0.276			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-i 46	49.5	3.05	0.41	4.21	_ 0.229	22.4	4.7×10-2	1.2×10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 47	50.6	234	4.84	4.66	-0.148	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	51.7	1.75	5.39	5-23	- 0.229			
20 53.9 1.18 4.95 4.75 -0.697	<u> </u>	52.3	(.29)	5.46	5.30	-0.372			
	<u> </u>	53.9	1.18	4.95	4.78	-0.697			

TIONAL 42-384

1"3

	-	θ(")	Imese	<u>a</u> "	<u>E</u>	∆(")	Bea	, Umi	at
	51	55.0	1.04	4.61	4.42	-0.821			
	52	56.1	1.07	4.03	3.81	-0.823			
	53	57.2	0.889	4.11	3.00	-0.724	16.1	2.4×10	-6.1+10
	54	58.3	0.387	2.01		+0.841			
	55	59.4	0.709	6.95	6.83	-0.541			
	56	60. S	1.01	5.47	5.31	-0.614			
	SI	61.6	0.936	5.10	4.92	-0.815			
	58	67.7	1.01	4.88	4.70	-0.978		1	
	59	63.8	1.14	4.50	4.31	-1.04-3	16.8	2.6×10-12	-6.7×10
	60	64.9	1.13	5.19	5.02	-0.914	1		
	61	66.0	0.904	7.07	6.90	-1.067			
	67	67.1	0.860	4.95	4.78	-1.700			-
	63	68.2	1.086	5.44	5.28	-1.747			
	64	69.3	1.29	5.30	5.14	-1.459			:
	65	70.4	1.56	4.85	4.67	>1 436			
	66	71-5	1.67	4.41	4-21	-1.747	18.9	3.3×10-12	8.4×10
	67	77 6	1.61	4.17	3.96	-1.305			
	68	73.7	1.61	4.43	6.23	-1.479			
	60	74.8	1.51	4.21	4.06	-0.575			
	70	75.0	1.52	4 02	3.50	-1.148			
	71	77.0	1.<<	4.27	4.01	1.200			
1	77	78:1	1.20	6.65	6.57	-1.550		1	
-(-	72	79.2	114	5.60	5.49	-1.115	<u> </u>		
	74	80.3	1.09	5 2 9	5.22	-1.316	16.7	2.2 -12	5 9 410
	20	81.4	naci	5.70	5.55	0.735	1.3.1	2.3 4.0	J. 8 × 10
	76	67.6	1 28	5.55	535	-0.016			
	77	62 1	1.20	4775	1.62	-0(50)			_
	20	64.7	2 04	1. 78	4.52	-0.990	19 5	7 5410-17	- 9
	70	34.1	1.65	4.10	4.60	-0:784	12.2	3.3×10	1.0410
	90	81.0	1.85	4.95	4.10	-0.398			
	90 G1	99 17	1.80	4.50	4.51	-0.570			
	01	69.1	1.20	5.00	4.85	-0.552			-
	62	00.7	1.5~	5.10	5.02	-0.4/4			
	814	90 2	1.10	5.36	5.20	-1.110			
	60	01.5	1.18	5.68	5.55	-1.644			
1	Q.	92.4	1.02	6.01	5.95	-1.513			
	30	015 5	0.945	6.01	7.21	-1.514	10 5		
	01	54.6	0.860	1.19	1.01	-0.662	13.5	1.7×10	45×10
	20	951)	0.90%	1.22	1.10	-1.041			
	60	06.8	(.036	6.15	5.99	-0.605			1
•		91.5	1.050	6.21	6.07	-0.056			
·	21	99.0	1.241	3.99	5.85	-6.097			1
1	02	100.1	1.49	5.61	5.52	-0.122	16.9	2.7×10	-6.8×10
1	- <u>15</u>	101.2	1.31	5.23	5.07	-0.321		-	
1		102.5	1.04	6.16	6.02	-0.777			
F	75	105.4	0.905	6-72	6.59	-0.656			
)	مار: ١	104.5	0.913	6.78	6.65	- 0.299			
	197	105.6	0.790	7.33	7.21	- 0.411	-		
	28	106.7	0.888	6.57	6.44	- 0.396			1
	10	107.8	0.980	6.11	5.97	-0.201			
	1					1			
	`								6

1

NECE2SI 1662 MHZ 2"11 resset.

ż

42-384

-<u>.</u>

SI	vea	6 ″	-may	*	*	equiv	A11		[
<u> </u>		0	1 mex	<u> </u>	<u> </u>	1:3	<u>ک</u>				
						• -					
	1	0	432						1		
	2	1.5	111.5				-0.0072		·		İ
	3	3	1.74				- 0.047%			1	
	4	45	6 97	2.24	n.76	2.22	-0.129				
		7.5				2 (7	-0.130		<u> </u>		
	<u> </u>	8	6.15	2.51	0.94	- 4.31	-0.152		1		·
		7.5	315	2.50	1.10	1.4%	-0.208		ļ	<u> </u>	
	7	9	2.29	2.47	1.28	0.87	-0.358				
	8	10.5	3.66	2.61	1.36	1.39	-0.401				l
	9 1	12	5.54	2.75	1.76	2.10	-0.370		-	1	1
	. 10	13.5	6.33	3.07	2.23	2.40	-0.290				1
	11	IS	5.68	2.90	2.12	2.10	-0.206	1		1	1
	12	16.5	1.72	2 010	2.74	179	.0.125		<u> </u>	1	
	12	16	610	2 24	2 17	2.0	0.120		<u></u>	1	<u> </u>
<u> </u>	5		0.67	202	3.20	1.26	0.239	· · · · ·	1	· · · · · · · · · · · · · · · · · · · ·	1
. 		(7.5	1.16	3.05	3.20	1.93	~0.520		1	1	ļ
<u></u>	<u></u>	21	1.38	3.60	2.92	2.80	-0.398			· · ·	L
·	ما	72.5	8.17	3.64	2.97	3.10	-0.324			<u> </u>	
	17	24	8.84	3.68	3.02	3.36	-0.227			<u> </u>	
	18	25.5	9.03	3.62	2.94	3.43	-0.200		1	1	
	19	27	8.21	3.56	2.87	3.12	-0.311				
	20	28.5	6.17	3.80	1.77	2.37	-0.43%				
1	21	20	6.02	417	3.60	2.20	0.200	·		+	<u> </u>
-{	22	30	2.03	2.02	2.22	210	0.207				
	22	21.2	1.0-1	3.94	2 67	7.65	-0.241				<u> </u>
	23	33	0.11	4.15	5.31	2.52	-0.250				ļ
	4	34.5	4.92	4.49	3.76	1.8/	-0.303				
	45	36	4.70	4.47	5.74	1.78	-0.428				
. <u></u>	26	37.5	3.69	4.68	4.18	1.40	-0.550				
	27	39	2.48	5.99	5.01	0.94	-0.874				
	28	40.5	2.60	5.21	4.76	0.99	-0.848				
	29	42	2.82	5.30	4.96	1-07	-0.631				[
<u></u>	30	42.5	2.100	5.08	4.62	lini	-D.665			1	
	21	AC	2.21	5 A1	4 99	1.77	-0 00J				
	20	12	3.01	510	1.10	1.61	0.040			+	
·······	-54	40.5	F.10		4. (T	1.20	-0.467				
	_ <u>\$</u> \$	48	2.26	4.91	4.50	2.05	-0-506				
	54	49.5	6.52	4.86	4.30	1.48	-0.005	<u> </u>			
	35	51.0	5.27	5.14	4.69	2.00	-0.194				
• 7~ • 7~	36	52.5	3.55	5.68	5.27	1-35	-0.291				
-	37	54	2.71	5.57	5.15	1.03	-0.624				I
	38	55.5	2.56	4.52	(4.00)		-0.958				
	39	51	2.17	6.64	74.13)		-0.941		1		
	40	58.0	174	6.16	5.97	1.69	-0.611			1	
	41	<u> </u>	2 12	6.00	5.40	DGA	0.485				i
	60	60	1.00	5.50	5 07	0.07	0 762			1	
~	40	01.5	4.50	3.45	5.06	0.0/	-0.106	·····			<u> </u>
,	45	_65	1.53	4.26	4.50	0.96	-0.785	i 			
 -	-49-	69.5	1.76	5.16	4.61	1.05	-1.045			<u> </u>	ļ
. <u> </u>		66	2.2	6.54	(6.17)	046	-1.124				ļ
_(46	67.5	2.27	5.76	5.36	0.86	-1.426				<u>i</u>
$\overline{\ }$	47	G.Q.	3.26	5.26	4.82	1.24	-1,503				
· _ · - · · · · ·	48	70.5	3.91	5.13	(5.68)	1.45	-1.383				L
	49	72	3.91	5.04	4.49	1.49	-1.339				
····	so	72.5	218	4.98	4.61	1.44	-1273				
		j	3.1.6		Τ΄ J Ι	·			1	1	i

æ NATIONAL

42-384

	*	D ³	T	51	*	reguiv	All		R	h	T
			Inex	<u> </u>	40	1 (.3	4		Jeg,	Mmn	
	21	75	3.13	A.48	3.95	-42	-1.052		<u>.</u>		
······	56	16.5	3.68	4.60	4.09	1.40	-1.216				
·	_ >>_	18	3.11	6.52	5.95	1.20	-1.228				
*	59	19.3	2.88	6.01	5.67	1.09	-1.104	· · · ·		_	<u> </u>
	-22-	71	2.57	5.61	5.26	0.98	-0.942				ļ
<u> </u>		82.3	5.67	3.66	5.21	1.25	-1.034	· · ·			
	6	95.5	4.51	5.20	4.13	1.64	-0.840	i I	1		
	20	<u> </u>	4.66	515	4.10		-0.511				l
	- 22	84 6	260	5.00	4.15	1.66	-0.381		1		1
	61	00.2	2 9 9	5.50	3.14	1.50	-0.409	[<u> </u>
	<u> </u>	ALC	2.54	6.01	5.65	1.00	-0.818	1	14.0	2 2 2 - 12	
	12	02	2.0	6.39	6.03	1.04	-1.385	1	14.9	1.1×10	01×2.6
		035	1.50	6.27	6.05	0.98	-1.534	l <u> </u>			
	104	94.7	2.61	7.10	<u></u>	0.84	-0.941	l	<u> </u>		
<u> </u>		90	1.15	(.3)	1.50	0.75	-0.88.6	·	<u> </u>		<u> </u>
+		91.5	210	6.01	<u>() - 5(2</u>	1.07	-0.486				1
	.0	100.5	2.67	6.20	5.05	1.24	-0.110	l			
	68	102	2.77	<u> </u>		1.05	-0.211		1		
	20	102.5	2.00	7.06	7.07	0.02	-01814	•	·!		l
<u></u>	21	105.5	2.23	7.10	6.12	10.95	-0.270		12 10	1.7.00-12	1 4.4.4.4
	\hat{n}	106.5	2.23	7.08	1.76	0.88	-0-3/7		11.2.0	1.1×10 -	4.4×10
-	n	108	2.68	1.00	6.10	1.02	-0.447	[1
	74	100	2.16	6.13	5.410	1.20	-0145C	· · ·		- <u> </u>	1
	70		2.61	7.06	6.74	1.07	-0.558				1
	- X	112.5	2.38	7.72	7.43	0.90	0.571		12 6	12 110-12	12-10
	3	114	7.58	7.66	7.36	0.98	+0.211		10.2	1. 1410	4.2×10
<u></u> _	79	116.5	2.11	8.64	8.38	0.80	10:301		12 6		
	29	117	1.23	9,56	9.27	0.66	0.414		16.0	1.7-12	3 1/101
	80	118.5	1.61	8.71	8-45	0.61	0.397	<u>.</u>		1.2.10	<u>Juvo</u>
	81	120.0	1.53	8.86	8.61	0.58	0.508				
	82	121.5	1.32	9.64	9 41	0.50	0.470		10.5	11110-12-	22.0.1
	83	123	1.13	13.29	(13.12)	0.43	0.307		10.0		2. 120
	84	124.5	1.17	15.07	(14.97)		0.474	l			
	28	126	1.13	11.81	11.62	0.43	0.144		10.0	9.1.15-13	1.4510
	86	127.5	0.962	12.67	12.49	0.37	0.167		9.06	7.5.00-13	19210
	81	129	0.85	14.38	14.2.2	0.32	-0.346		9,23	6.5×10-3	1.6-10
	88	130.5	0.087	14.24	14.08	0.37	0.177			0 000	1 0/10
	89	132	0.985	13.17	13.0	0.37	0.678		8.91	7.4×10-13	
	50	133-5	0.901	12.83	12.66	0.34	0.702				
	1			· · · · · · · · · · · · · · · · · · ·		:		-			ľ
											1
·											
-(
\sim						`	,	•			-
	. 1			~							
. <u></u>											
									1	1	[

ತಿಕಿ

2.11 <u>contid</u>

NGC6251

42-384

"4".39 Herrintion"

1662 MHZ Cellsie = 100 3:5

	Suce	θ(")	TMJ	句(")	4:15	4-37 8	٨(")	Tegur	Bas	4.	
			-mex	/	-77-	<u> </u>		21-1-5	ngamo	Jmz	m-31
		0	A2 40	175	12-	1.61	0.00070				
	2	36	<u> </u>	4.15	0,00	1.81	-0-000/8				÷
,	2	3.5	100	4.18	687	1.01	-0.0199				<u> </u>
	4	10.5	9.07	4.84	160	2.04	-0.187		<u></u>		
	- 2-	10.5	9.01	5.08	687-	2.50	-0.303				
	<u> </u>	17.6	14.1	5.50	200	3.08	-0.510				
	2	21	<u></u>	5.5	A DO A	3.45	-0.241				
	\$	24.5	24.1	5.51	2/22	3-55	-0.520		1		
·	9	24.5	24.5	5.55	3/03	3.56	-0.270				<u> </u>
	- Jo	21.5		5.02	4.75	3.31	0.316		·	_ <u>i</u>	
		25		5.05		3.84	0.243			1	<u> </u>
	12	33	15.6	6.05	-3.31	9.22	-0.546		<u> </u>		
	12	30.5	10.1	0.54		4.51	-0.604				
	15	46	8.00	6.54	4.30	4.85	-0.691				
	14	<u>-42.2</u>	12.02	6.60	4,50	<u>495</u>	-0.552	. 10			
<u> </u>		47	18.1	6.45	458	4.15	1-0.656	1.99			
	16	52.5	15.1	6.75	4/80	5.13	-0.514	1.15			
	11		1.53	6.42	£.32	4.68	-0.705	0.660			
	18	20.2	6.63	6.90	5.00	5.32	-0.568	0.581			
	<u>'</u>	63	7.72	6.41	430	4.61	-0.921	0.671			
	20	66.5	8.03	6.18	4.50	5.[7]	-1.205	0.104		1	
	21	70	11.10	6.46	4.38	4.74	-1.369	0.913			
<u> </u>	22	13.5	11.8	6.26	4.08	4.46	-1.211-	1.04			
	23	רך	10.9	6.59	4.57	4.91	-1.133	0.956	1		m-
	24	80.S	10.0	7.07	5/24	5.54	-0.953	0.877			
	25	84-	13.2	6.59	457	4.91	-0.732	1.16			
	26	87.5	13.1	6.80	4.87	5.19	-0.481	1.15			
	27	31	9.58	7.45	5.74)	6.02	-0.977	0.840			
	28		8.51	7.71	6.07	6.34	-0.988	0.746	1		
	29	98	10.2	7.48	5.78	6.06	-0.434	0.894	<u> </u>		
<u> </u>	30	101.5	10.3	7.31	5.86	5.84	-0.330	0.903			
1	31	105	8.50	7.90	6.31	6.57	-0.477	0.745	}		
NVW	32	108.5	9.61	7.47	5.17	6.04	-0.464-	0.893			
	33	112	9.42	8.04	6.49	6.74	-0.405	0.826			
<u> </u>	34	IIS.S	7.75	8.65	7/23	7.45	+0.224	0.680			
3	35	119	5.79	9.27	9.90	8.16	0.344	0.508			
	36	122.5	4.82	10.03	8.83	9.02	0.118	0.423			
	31	126	4.05	10.36	8.21	9.38	0.110	0.355			
_	38	129.5	3.39	10.54	9.41	9.58	0.343	0.297		-	
	39	133	3.38	10.65	3,53	9.7	0.946	0.296	1		
-)	40	136.5	3.71	11.77	10.77	10.92	0.927	0-325		-	
R	41	140	5.05	9.83	8.61	8.8	-0.0006	0.443			h
5	42	143.5	5.07	9.12	7.19	7.99	-0.159	0.445	9.07	7.68×10"	1.94×104
30	42	197	3.96	10.29	9.1%	9.31	-0.103	0.347	1		
- Č	44	150.5	3.14	10.85	3/15	9.92	+0.191	0.775			
	- A	154	2.62	10.64	8.52	9.69	10.393	0.230			
1 -	56	157.5	2.68	11.38	10:54	10.50	+0.339	0.235			
L	41	161	7.67	n.15	11.20	11.44	10.339	0.734	1		
	48	166-5	2.18	4.32	13/81	13.63	+ 0.150	0.191	6.52	2.58×10-13	652×109
	25	168	2.2	13.76	12.91	12.14	-0.459	0.198			
······	~~~	171.5	211	11.92	18.94	11.007	+0-231	0.229			

NGC 6251

42-364

4.39 resset.

~

1662 MHZ Ceu 53?

	-		mTy					DOWN	~		
5	SLICE	9	Tmer	あ(*)	Ō,		∧(")	Tip	Kee	4 min	J.T.
								_ <u>e</u> .y_	V		<u></u>
	51	176	210	10.60	11.75	· · · · · · · · · · · · · · · · · · ·	10170	A 272	· · · · · · · · · · · · · · · · · · ·		
	5	175	5.00	14:54	15.20		10.619	0.365	·		
	26	178.5	5.18	11.21	10.50		10.005	0.454		·	<u> </u>
<u> </u>	55	182	6.52	10.64	7.69	1	-0.296	0.572			
	54	185.5	6.91	9.89	8.86		-0.582	0.606			
	55	189	7.82	9.66	8.60	[-1.162	0.686			
	56	192.5	9.90	9.26	8.15		-1.114	0.868	.10.9	1.10×10"	2.78-10"
	57	196	8.10	10.48	9.51		-0.983	0.710			
	58	199.5	6.25	11.30	10.4		-0.414	0.54-8	8.28	5.41×10-13	1.62 1010
	59	203	7.70	12.37	11.56		+0.941	0.675			
	60	20/0.5	16.0	10.29	9,31		41.114	1.403			
	61	210	17.5	10.12	9.12		0.059	1.52	12.0	1.34×10-12	2.20 1010
	10	012 (11 1-	1120	10.40	·	0.00	1 100		1.01410	55510
	00	2:3:3	1 02	12.0	17.72		1 467	1.00 N (00	774	56010-13	10.00
	65	211	0.86	15.0	16 23		-1.365	0.570	1.14	J.60×10 -	1.92×10
	64	220.5	1.64	15.6	12.81		-1.523	0.610	1		
	65	224	11.20	15.5	12.6	mr .	-1.201	0.982	·		
	66	227.5	13.9	13.4	12.7	<u> </u>	-1.632	1.219			
	6)	231	14.1	12.7	11.9		-1791	1.24	9-67	8.74x10-13	2.21×10
	68	234.5	10.4	13.3	12.6		1-1-561	0.912			
	69	238	8.17	16.4	15.8		+0.247 .	0.716	7.04	4.63×10-13	1.17×10"
	70	241.5	10.85	15.1	14.4		+ 0.999	0.951			
1	71	245	10.65	14.7	4.0		1.404	0.934	1	1	
-(210.5	918	160	14.2	1	7.207	A.GAQ	<u>.</u>	1	
	14	240-2	002	10.7	14.0		2 707	0.37	10.7	108510-12	2.7210!
	.15	232	2010	14.1	12 1		5.101	0114	10.1	1.00000	A INIO
	74	255.5	1.63	14.3	15.0		4.500	0.654)
	-15	259	5.15	16.0	15.4		5.500	0.450		0.11. 12	
		262.5	3.24	18.1	11.6	-	1555	0.184	5.08	2.41×10-13	6.1×10
	<u></u>	266	2.56	17.9	17.4		9-350	0.124			
	78	269.5	1.82	19.2	18.7		10-22-	0.160			·
	79	273	1.31	21.9	21.5		11.05	0.115			
	80	276.5	1.27	19.3	18.8		1158	0.11	3.74	1.31×10-13	3.3)x102
			-								
*											
		•									
			4	~							
			······								
						·				<u> </u>	
										<u> </u>	
1	1	1									
<u> </u>		1				1					
	· · · · ·	: 1 ir			······································						· · ·
	ł						·			1	
(· · · · · · · · · · · · · · · · · · ·		1				<u>.</u>	r		
~	·		;			·	1			-	<u>.</u>
						·					
		·					·			· ·	
				· · ·							
		t T	1	1 1		i	1			ł	i

HBCturbulence -NGC6251

\$

<u> </u>	Ð	10	d D do	<45/d8>	<	\rangle^3	νj	Vj/ō	(Vj/3)	くごいう	15910
	· · · · ·										
	<u> </u>	(0.12)	0.020	D 0 20	0	6	1.22	1.04.10	100102	8.66 10	-3.06
	<u> </u>	(0.12)8)	0.020	0.020	1.1.1.	1004	1.90	9.59	97.2	1.61 102	-1.79
	 له	(0.252)	0.035	0.074	4.05	10-4	2.05	7.98	63.6	2.58 102	-1.53
	5	(0.35)	0.093	0.093	8.04	10-4	2.17	6.20	38.4	3.09 10-2	-1.51
	5	(0.50)	0.15	0.15	3.38	10-3	2.26	4.52	20.4	6.91 10-2	-1.16
	1	(0.85)	0.35	0.35	4.29	10-2	2.32	2.73	7.45	3.20 10	-0.49
	9	1.35	0.25	0.20	8	10-3	2.38	1.76	3.11	2.49 102	-1.60
	1	1.55	0.10	0.175	5.36	10-3	2.43	1.57	2.46	13210-2	-1,88
	: 15	2.15	0.15	0.15	3.38	10-3	2:475	1.15	1.33	4.48 10-5	-2.35
	ี่ 17	2.60	0.225	0.15	3.38	10-3	2.487	0.957	0.915	3.09 10-3	-2.51
	79	2.85	0.125	0.13	2.20	10-3	2.49	0.874	0.763	1.68 10	-2.78
	21	2.95	0.050	0.05	15.12	10 .	7.493	0.845	0.714	5 66 10	-3.44
	23	3.00	0.025	0.03	1.70	10 -	2.4355	0.531	0.021	1.8 1 10 -	-4.15
	25	3.00	0.050	0.0	0.00	5	2 106	ASIC	DILA	106 105	<u>_A aa</u>
	27	3.05	0.025	0.025	1.56	10-4	2.705	0.013	0.664	2010-4	-2 70
••••••	25	3.25	0.100	0.07	3.45	10 .	2.475	A.729	0.520	286 10-4	-3.41
	32	3.40	0.05	0.05	1.06	10-3	2 472	0.677	0.450	8-94 10-4	-3.05
	25	2.90	0.126	0.125	1.05	10 h-3	2.472	0.624	0.407	7.8410-4	=3.11
	37	4.10	0.100	0.110	1.22	10-3	7.478	0.604	0.365	4.86 10-4	-3.31
	29	4.35	0.05	0.110	1.33	10-3	2.486	0.572	0.327	4.34104	-3.36
	41	4.50	0.075	0.08	5.12	10-4	2.49	0.553	0.306	1.57 10-4	-3.81
	43	4.60	0.050	0.06	2.16	10-4	2.50	0.544	0.295	6.38 105	-4.20
	45	4.70	0.050	0.05	1.25	10-4	2.51	0.534	0.285	3.56 10-	-4.45
	47	4.80	0.050	0.05	1.25	10-4	2.515	0.524	0.275	3.43 105	-4.40
	49	4.85	0.025	0.025	11.56	10-5	2.52	0.520	0.270	4.21 10-6	-5.38
	51	4.90	0.025	0.025	1.56	10-2	2.523	0.515	0.265	4.14 10-6	- 5.38
	53	4.95	0.025	0.025	1.56	10-2	2.527	0.511	0.161	4.010	-5.39
	55	4.97	0.010	0.010	1.00	10-6	2.531	0.202	0.252	2.59 10-1	-6.59
	5-1	4.05	0.010	0.010	1.00	10-2	2.531	0.50	0.251	12.57 10-1	- 6.59
···	<u>- 22</u>	5.00	0.005	0.605	1.45	10-8	2.252	0.506	0.256	5.2110	-1.47
	20	2.02	0.00/4	0.0024	1.58	10-5	1 52	0.301	0.251	201 10-6	-6.40
<u></u>	DL OL	-6.2	0.025	0.025	1.36	10-4	2 (22	0.490	0.227	12.91 10-5	-4.52
	94	6.27	0.050	0.050	17 16	10-4	1.536	0.471	0.227	4.90 10-5	-4.31
	88	5.52	0.105	0.105	1.16	10-3	9.525	0.458	0.210	2.44104	-3.61
	90	5.74	0.105	0.105	1.16	10-3	2.537	0.447	D.195	2.27 10-4	-3.64
	92	6.0	0.13	0.13	2.20	10-3	2.54	0.423	0.179	3.94 10-4	-3.40
	94	6.4	0.20	0-20	8.00	10-3	2.542	0.397	0.158	1-26 10-3	-2.90
	96	6.6	0-10	0-10	1.00	10-3	2.545	0.386	0.149	1-4710-4	-3.83
	୍ର୍ୟୁ	6.4	0.10	0-10	1.00	10-3	2.548	0.398	0.159	1.53 10-4	-3.30
·	100	6.1	0.15	0.125	1.95	10-3	2.551	0.418	10.175	341 10-4	-3.26
	102	5.9	0.15	0.15	3.38	10-3	2.553	0-440	0.194	6.54 10-°	-3.18
	104	1 6.25	0.225	0.225	1.14	10-2	2.555	0.403	0.167	1.21 10-3	-2.72
-{	106	0.0	0.275	0.275	7.08	10-2	2.557	0.376	0.141	2.79 10-2	-2.53
*	108	1 0.J	0.25	0.27	1.56	10.2	2.559	0.406	0.165	12.5110-3	-1.59
	<u>.: 011 :</u>	3.0/05	0.12	U.16	1.26	10-	1.561	0.416	0.173	2.10 10-2	-45
	116	7 12	0.274	0.15	1.20	10-2	1.303	0.261	10.146	2.21 10-3	2.65
_	114	7.0	0.270	1.20	2.12	10-2	1.(17	1.275	UILD	212 10-3	-2.83
	- <u></u>		· · · · · · · · · · · · · · · · · · ·	V	7.42	iV .	1016	10-262	10,100	1 3 10 L IU	1 4.22

HBC turbulence - NGC6251 cont'd.

<u> </u>				,			1			1
	Ð	Ø	do ao	< >	< 7 ¹	∿j	(Vi/J)	$()^2$	< > < >	lotio
<u> </u>	118	9.4	0.25	. 0.25	1.56 10-2	7.568	0.306	0.093	1.46 10.	-2.84
	120	<i>4.</i> 7	0.15	0.16	4.10 10-3	2.568	0.295	0.087	3.57 107	-3.45
	17.2	8.95	0.125	0.14	12.74 10-3	2.569		0.082	2.25 104	-3.65
	12.4	9.2	0.125	0.125	1.95 10-3	2.57	0.279	0.018	1.52 10-4	-3.82
	12.6	9.4	0.10	0.10	1 10-3	2.571	0.274	D.075	7.48 103	-4.13
,	128	9.50	0.05	0.08	S.12 10-4	2.571		0.073	3.75 10-5	-4.43
	130	9.65	0.075	0.06	2.16 10-4	2.572	10.267	10.01	11.53 103	-4.81
	132	9.70	0.025	0.03	2.70 105	2.573	<u> </u>	0.070	1.901000	-5.72
	134	9.70	0.030	0.00		2.574			; 	
	136	9.60	: 0.05	0.05	1.25 10	2.575	0.268	0.072	8.0010	-5.05
	138	9.4	0.1	0.1	10-3	2.576	10.274	0.015	1.21 10-3	-4.12
<u></u>	140	8.9	0.25	0.25	1.56 10-2	<u> </u>	10.289	0.084	1.31 × 10 3	-2.88
	42	8.4	0.25	0.25	1.56 10 4	7			1.4110-	-2.03
	144	8.3	0.05	0.1	10-3	77_	·		3.1 10-7	1-5.21
	46	8.45	0.075	0.06	2.16 10-7	8	ļ	0.093	12.01 10-	-4.10
	148	8-75	0.15	0.15	3.38 10 3	1.518	·	<u> </u>	2.9510	- 5.5:
	<u> </u>	6.15	0.2	0.18	5.85 10	7		· [14.6510	-3.33
	156	9.5	0.175	0.18	5.85 10-	2 52			CA210-4	1 2 2 2
	154	9.9	0.2	0.2	200 1053	2.313		1	34510	-3.61
	156	10.6	0.15	0.15	3.58 10 -		<u> </u>	1	1.03 10-4	201
-{	158	10.8	0.3	0.15	2 20 10-3	00			1 88 10-4	-2.72
<u> </u>	10	10.03	0.015 1 10C	0.13	5.38 10	<u> </u>	+		12 04 10-4	-2.67
	160		0.115	0.10	5.83 10	2 580			2.91 10-4	1.2.CA
	104	1.35	0.16	0.10	22610-3	0			1.60 10-4	-2.80
·	106	12.1	A.125	A 18	210 10-3	· · · ·		1	1.00 10-4	-4.00
	170	12.75	0.125	0.13	103	<u> </u>			4.44 10-5	-4.35
•	112	17.1	0.075	0.08	5.12 10-4	<u> </u>			2.32 10-5	-4.63
	126	11.9	0.15	0.15	3.28 10-3	· · · · · · · ·			1.62.10-4	-2.79
	176	11.2	0.3	0.3	2.70 10-2	,		1	1.4310-3	-2.84
	178	10.6	0.3	0.3	2.7 102	2			6.58 10-3	-2.18
	180	10.2	0.2	0.25	1.56 10 2	2			1.0 10-3	-3.00
	182	9.4	0.2	0.2	8 10-3	2		1	5.55 10-4	-3.26
	184	9.45	0.175	0.18	5.83 10-3	2.582			4.35 10-4	-3.36
	186	-9.1	0.175	0.16	4.10 10-3	2			3.30 10-4	-3.48
	188	8.8	0.15	0.15	3.38 10-3	2			2.97109	-3-54
	190	8-45	0.05	0.13	2.20 10-3	3			2.06 10-9	-3.69
	1 152	8.3	0.035	0.08	5.12 10-4	3			4.96 10-	-4.30
<u> </u>	154	8.4	0.05	0.05	1-25 10-4	3		<u> </u>	1.18 10-5	-4.92
	1 156	8.8	0.2	0.1	10-3	2.583			8.62 10-3	-4.04
	198	9.6	0.4	0.3	2.7 10-2	3			1.95 10-3	1-2.71
. <u></u>	.700	10.4	0.4	0.4	6.4 10-6	3	1		3.95 10-3	-2.40
·····-	202	11.8	0.7	0.5	1.25 10-	4	<u> </u>		5.95 10-3	-2.22
	204	11.8	0.0	0.2	10.4 10-2	<u> </u>			3.07 10-2	-2.51
	706	11.5	0.15	0.3	2.110	9 (0%.		<u> </u>	11.36 10-3	- 2.87
-{	100	<u></u>	0.45	0.2	8 10-3	1.702			2.80 10"	-3.24
	012	2.7	· U'A	016	3 20 10 3	4			12 61 1-6	-3.00
	1 114	10.17	0.1 0.77C	0.19	598 10-3	·>>>>>>>	-		2 26 10-	1 - 2:25
- :-	- วัเ	10.0	N 10C	0.10	5.8510			1	2.50 18-4	-2.45
	7.8	11.3	CI 10	0.1	D.03 10 -	200	<u> </u>	1	771.10	4.70
+ 	<u> </u>		<u>; v.i</u>		10.0	<u></u>	.!		S. M. In .	

••

·•3. - 4.

Firs to NGC6251 1480MH2 15"

	Ð	Δ	ð	Δ
	12"	- 0."016		+13.95
	24	- 0.333	336	+ 15.53
و دو ۲ ش	36	- 0.381	348	+20.10
	48	- 0.544	360	+18.00
	60	-0.672	372	+ 17.62
	72	-1.299	384	+ 16.39
	84	-1.193	396	+ 17.32
	<u> </u>	-0.911	408	+24.10
	108	-0.611	420	+29.22
	120	-0.304	432	+37.19
	132	+ 1.304	444	144.61
	144	+ 1.966	456	152.36
_	156	+ 2.103	468	+ ???
	168	+4.021	480	+67.79 7
-align y a	180	- 0.055	492	+61.73
	192	-0.810		+ 124.6
-	204	-0.397	-	•
j	216	-0.031		
	228	-1.487		•
	240_	-0.869		· · · · · · · · · · · · · · · · · · ·
	252_	+ 1.719		
-	264	+4.951		
	276	+9.080		
-	188	+ 11.32		
-	300	.+ 11.93		
•	312	+ 14.60		· · · · · · · · · · · · · · · · · · ·

una ante anta estacesententen entre presenta latera antena de la compositione de la compositione de la composi

: • •

Ţ

Hence:-

Concerning and a concer						
Average angle	edata	20"< 0 <100"				2
Perkar	0.0234	· 4199E-6	is ~ 7.9 x bard	TT = .008	1 in 6 specha	★ 85.
	0.112	· 8139 E-7	is ~ 8.1x -	. 506	8	× 17.
	0.172	· 477 E-7	12.2×		490 spen	11.
	0.287	·223 E-7	16×	2.3×10-6	2151speche	7.0
	0.359	·122E -7	28× -		uncontrible	5.6
=> SIGN	previs	11:6, 7:0	, 5.6			
Average capte	e dela	0"<0<100"	•			λ
	0.292		10x bgrd	TT = 9.3×10-4	1 in 52 specke	16.85
	0.3575		112	3.4×10-4	1 in 143 sp-	15'.6
."		11				
1.3 angle d	elc	0<0<100			э.	
	0.190		10.4×bgrd	T= 1.5×10-3	l in 14 spectra	15".8
1'3 deflect	I'm dela	0"< 0<100	u -			
Constant and the second s	ann an					-10
	0.190		9.3×bgrð	(1= 4·5×10)	1 in 4.6 speche	. 5.8
2". I anale	dova	0"< A < 134"				
J	0.0885		7.7xbard	$T = 2.0 \times 10^{-2}$	1 in 1.2	× 16".9
	0.166		11.5x bard	T= 4.5×10-4	1 in 51 speche	19:0
	0.260		. ×	$TI = 6.6 \times 10^{-4}$	1 in 34	15".8
2"1 ayle i	ava	15"<0<134"				
	0.166		16.2 xbard	TT=3.5×106	1107170	19"0
	0.260		23×			1 5".6
	0.31		10 ×		1.h 14 .	4".8

4".4 anje dere	125 <0 < 276"			
0.148 0.102 0.274 0.372	10.3×bgrd 10.2×	TT = 7.4×10 8.2×10	e lin 62 specha IN 56	23".6 34".3 12".7 9"4
4". 4 anyle dela	80"< 0 < 276"			
No signific	en peeus			
, U		Sidelober at	230" bedahiasing	
15" ayle dora	210" < 0 < 440"			
0.029				413
0.086				85"
2"1' ayle dela	30 ^{′′} < ⊖ < 1 m [′]			
0.115	10.2×59.10	0+001	in 26 speecha	13".0
0.163	9.1×53-2	0.504	1 m 9 speche	9''2
l'Bayle doic	30" < 0 < 100"			
0.190	26.3×69.0	Smell	~	5".8
0.083	5.8×552			13/3
0.1410				
15" angle dava	0''< ⊖ <45℃			
0.0781	7.5×bgrð	11= 0.010	lin 5.1 sperke	153':6

¥ 22 July 1982

Zs = 0.6864 (Kpc) CH fr to NEC6251 a = 1.0 Core integration m=4.15 1.6 × 105 cells_ bs = 4x10 cm3 K net~ 4×108 Ne=10 T= 4×10 1=20 T= 2×10 1=40 T=10 8.83×10 1.77×10 3.53×10 M 1 M Rinex = 6.39×1043 2.13×1044 5.10×1044 Lx 1.44×103 2.88×10 577×10 2 2.33×1044 6.98×1043 5.57×10 7:4 7 10 3.78×10 1.85×103 10 6.99× 10+3 2.33×1044 5.58×1044 7.58 103 3.78 × 109 1.89 × 10? 20 2.33 × 1044 5.58 × 1044 6.99~1043 Conclude: At T=2x10 K Core has Lx ~ 2.3×104 erg/sec 90% within 1 kpc of certer

22 July 1982

25 = 16.73 kpc CH fit to NRC6251 Halo integration ____ $m = 2.60^{-1}$ _1.6 × 105 cells.__ $p_s = 4 \times 10^5 \text{ cm}^{-2} \text{K} (helo)$ Ne= 10 - T=4×10 - Ne=2×10 T=2×10 - Ne=4×10 T=10 Kmex = 150 M 8.41×1010 200 M _1.38 × 10" 2.76×10" _____5.52×10" 1.60×1043 6.68×1042 Lx 2.01 × 1042 M 1.77 × 10" _3.55×10" 7.09x10" 300 6.70×1042 Lx 2.01 × 1042 -1.60×10^{43} M 4.39×1010 L× 1.81×1042 8.78 × 10° 6.02 × 1042 1.76×1011 1.44×1093 50 Conclude : At T = 2x10 K Helphas Lx ~ 6.7×1042 erg/sec 30% within 50 kpc of center. N.B. Drude L'Sby 1.352 M'S by 1.163

۶

.

•

 \sim

 $\left(\right)$

46 1521

.

Ť

- C							1					r									· · · · · ·	1						· · · · · · · · · · · · · · · · · · ·	<u>. </u>			
-	1										:::::	·															: ::::		11 H			
	1.					1111												;:													 	
	: 212					: ::::				:: :::	: :::·													: : : : : : : : : : : : : : : : : : :			: ::::			: ::::		
	: ::::		1 1	= ====			::::	::::	:::: ;:			::: .:		:::::	:::.	::::::		:::::::				:::::::		::::::			: ::::	:::::::		:1.:	:: :	
						<u> </u>	<u> </u>				<u> </u>	<u></u>	<u></u>	<u>; : : :</u>		:: ::					<u></u>			: : : : : : :	<u>====</u>	<u>. · : ·</u>	<u>: ::::</u>			<u>. . : : :</u>		
						-11				:: :::	1999					÷.].:								-1		:: .:.	1122		:: I -:	:1::::		· [• • • • ! • · · ·
·\ -	-					+ + + + + + + + + + + + + + + + + + + +				. 	. 										· ···· · · · · · ·			******			• • • • • • • • • • • • • • • • • • •					
										:: :::	:::::				::::												IEE				:	
	1=1=		: :			1							•			=1:	_												=			
			: ===			1					: ::::			1::-::								=== =	_				::::::		= ==			
								=	=1=		1==					==	=!==:							_					=1===			
5								:===		x		••••												====		=	==		====			
-۲-						:							:1 • .	• • • • •																		
				- -		:::::		:::::				:	<u>.</u>]• .'	:: :		·					•••••								=====			
													: :						34 33					;:-===					====:	:		
		<u>} · · · · · · · · · · · · · · · · · · ·</u>	<u> </u>	· · · · · · · · · · · ·		• · • • • • • • • • • • • • • • • • • •	1	···			12.	<u> </u>	<u></u>		· · ·							1							<u> </u>		* :	
		\ '' :- ::::					1::::			• [:::	.:		1.	: .:'	·			l:			•			·		:			::	· :	: : · ·	····
			-			:						• • •				• :			<u>;;;:::</u>							_	11.1					1
. 2 -			:					::::		<u> </u>	:1:::	<u> </u>	.1:				.: .::	·	:: .]							: : : :	1		<u></u>			1
-2 -		s i N											1.5			·-i::							===		==	=			17			
		··· · · · ·				• • • • • • •							<u></u>			<u> - -</u>		<u></u>	<u>.</u>						•							
		··· .	1	- J				···;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;					· ·						1:					:::::]	• • • • • • •							
	ļ, <u></u>	1	1		· · · ·		+ - +				:		<u> </u>	1			•••		<u> </u>		1.6	5		· · ·		A		_5	•••			
				<u> </u>			<u>.</u>	·.].	•	_		i	. !	P	ion I C	2	<u>Nc</u>	Is.		~	\mathbf{U}	<u> </u>	<u>n c</u>		<u> </u>	4	X		•		:	<u> ·</u>
	1	1 N		1		1		~	1	1									1		·				<u></u>	1	1					1 2.
.4 -	{	\				<u> </u>	<u>.</u>			· · ·						_ i _			<u> </u>	-	<u> </u>						<u>.</u>		<u> </u>		2	
•	:.								. [].			-	1.	:.		1.	e	AT.	1.		: Z×	1D		. A	~	:12:	×	10	- C	In		
			· N			: : : : :		:.::	111						•			::::::				:::::					1					
			: :X :::::	: : <u>::</u> ::	:::: ::: :::	::::	.:·.!:	::: : .			· · · · ·	. · i.	·						<u>:: ::</u>	= 1 =		= =		: <u></u>	<u>,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1::=		=1===	11111	.:.:!: :*	: : ! . : :
			. N.	ELEE								 	: ::::			in in				====			= ==			1	1		-12			
							···· ··						· · · · ·		•••••					· · · · ·					••••••	-						
r										<u></u>	1		:=	<u> </u>	====	ΞΞ			$\equiv \equiv$				_	·····			<u> </u>					
- D -						1:1						===	-	===												-			-			
									i÷		1			<u> </u>					三三	_				<u> </u>		:			-			
					\$		=						:	====		=		===	==										-1			
				Cate								*****					•••••		==													
						1							:==		<u>- </u> =	三三			= =				==						-			
		=		UBM			iiiii i					===	:			==					<u></u>		==		;;::							
.6-					***					u u u	1	:					<u> </u>	جوجك وسيندو								_		·				
•			i la da	1==17	副田			H	= #						==	=1=			==	333						1			1=			
		1		1	10						-2	5		10	0	=	=12	0		12	0	<i>]</i> :	60			60		2	50		= 22	0
			YHH		ELME			بر ص		ΞĦ				===		= =										: 🗄		History - Hereit	1		<u></u>	
		*****		1::::	iii	1111	;!:!!			1 11 1		;= <u>;</u> ;];==							= ==							r	;;;;]	ri	-		╤┿╼╾┥╼╤┿╤	•
						1111			파니다		1144												-		+							
	= 7							HIF	Ŧ₽ŀŀ					:11				141 =				111							1		5	CAIC
		11 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1	1.11		11111		21 11	1111	111:1																				:171:1-1	
	==1.1					111									:::: : :	:: ::	:::::::	<u>:-1: </u> ==		=======		1:12:12:			11-1		trai.			::::::		
r		11			14 14											:: ::	:: HH	HELE						1::	#1		12:51					
																		****				· · · · · · · · · · · · · · · · · · ·								1.41.		
•					扣泪																								17.5			E HE
											1					<u></u>				:			: ====	1111:12				12122	1:1:1	11111		
	1			11:::1								<u> : :</u>	:::::	::::	::: :::		· ::::	<u>::::: :::</u>		: ::::		::::	<u>= ::::</u>	<u> :::: :</u>	1			;;;;]:::::		****	***	
	:=:				时间				<u>::!!!</u> !					::::T		· :	:, ::::			::::::			: ::::	551 E	H)						(:: :::i	
									<u></u>		1441									- (-				 :						 :	;;;;;;; ;]	 :
۰.																									16 ===	1		1.		141 F	STE 51-1	HEALE
			lundin		Him		11:11							::::		::::	;;;;;;;	=======	::::	1		====		:::::							1:1:1:1	
			HEFE		田田	11.	1111				<u>[::::</u>]			<u></u>		::::			: :::	:::::	1111711		::=:		***	1777	:=== :		1==			
	1	the second s	and the second se							1 4 4 4 4	1	1	1	••••				*******				ant, and 🕴 e ant	4 §			1			******			
					H	11231	IIII		========	1111	11:1:1		: ::::	:::::::															1			

	1
labla	4
Laove	

Minimum Mass and 0.5 tequired	- 4 ker luminosity =	j media	
	0	3	
Assumed Isothermel Temp.	4×10 K	2×10 K	IOK
[(2.0 to 50 kpc), eig. 5-1	1.3×1042	4.5×1042	1.1×1043
M(20 % so kpc), MO	3.8×10'0	7.5×1010	1.5× 10"
(2.0 ro 200 kbc), erg.s.	1.5×1042	4.9×1042	1.2×1043
M (2.0 ro 200 kpc), MO	1.2×10"	2.4×10"	4.7×10"
Lx (<1.0 kpc) erg. s=1	4.7×1043	1.6×1044	3.8×1044
M (<101cpc), MO	7.6×108	1.5×103	3.0×103
l_{x} (< 2.0 kbc)	52×1043	1.7.4.44	4 141944
M (<2.0 kpc)	1.2×10	2.5×10	5.0×10

Converted to fini from Unit 15 April 1983

Outflow limit from hobe Depx"
Willis, Wilson, Storm (1978)
$$\rightarrow$$
 De 14 lok < # 2×10⁵ cm⁻³
 $\leq 2\times10^{4}$ m⁻³
Beq = 1.5×10⁴ game.
Hobe redius ~ 7¹.5 + 450⁴ = 193 hpc = 5.96×10²¹ m
Mars in sphere of this reduue $-\frac{4}{3}xT \times 20\times1.67\times10^{27}x (6.96\times10^{21})^{3}$
 $= 2.96\times10^{40}$ kg
 $= 1.5\times10^{14}$ Mo

Entrainment Upper dimit

$$\frac{dim}{dtal} = 2\pi R_{j} Sram Corrent
10" from care $nT \sim 1.6 \times 10^{5} \text{ cm}^{-3} \text{ K}$, $p = 2.2 \times 10^{-12} \text{ J/n}^{3}$
 $T \sim 3 \times 10^{7} \text{ cm}^{-3}$, $p = 2.9 \times 10^{-14} \text{ kg/m}^{3}$
 $R_{s} \sim 5.33 \times 10^{-3} \text{ cm}^{-3}$, $g = 8.9 \times 10^{-14} \text{ kg/m}^{3}$
 $Q_{s} = \sqrt{15} = 6.4 \times 10^{5} \text{ n/e}$, $= 640 \text{ km/s}$.
 $R_{j} = 0.75$, $= 322 \text{ kc} = 9.93 \times 10^{2} \text{ m}$
Hence dm
 $dtdl = 2 \times \pi \times 9.93 \times 10^{2} \times 8.9 \times 10^{-24} \times 6.4 \times 10^{5} \text{ m/s}$
 $= 3.55 \times 10^{2} \text{ kg/m}/\text{se}$.
 $= 1.09 \times 10^{24} \text{ kg/m}/\text{se}$.
 $= 3.46 \times 10^{26} \text{ kg/m}/\text{se}$.
 $i.e. lle length scale for entaining its care flass rate more the $\gtrsim 1.2 \text{ molysr}$
 $i.e. lle length scale for entaining its care flass rate more the $\gtrsim 1.2 \text{ molysr}$
 $i.e. by @ ~ 26^{5}$, $R_{j} = 1.84 \times R_{j}$ in
 $i.e. by @ ~ 26^{5}$, $R_{j} = 1.84 \times R_{j}$ in$$$$

KEUFFEL & ESSER CO. MADE IN U.S.A. 18 X 25 CM.

46 1521

Hanning Preichmened Power Sp. (512) (Inner Jer) 17" 12:7 10:4 5".8 143 dera (0) 28" 0>15"4 NO(0) 25" 17"5 12".3 10".5 7".1 0715.4 (୬".୦) (16.9 024 (10) \$ 200 9.1 12.12 15" < 0 < 13 37".5 17".3 2"11 dera $\Delta(\Theta)$ 15"< 0< 100" 12".S 26".5 18"? 9".1 39".6 1.6 9.1 12".2 5".6 0/0 15"<0<134" 54".9 24".9 18".3 12".4 9".1 15'<0<100 Conclude 3".1 12".4 growing 2" cell Averaged DIO 2పీ< 🖯 < సం 20'40480" 20''<@<100" 20'< 0 < 120" 9.0, 12.1, 17:5 lonchide Finally

1.1.1