

SEND TO: Director NRAO Edgemont Rd. Charlottesville, Va. 22901
DEADLINES: 15th of Mar., June, Sept., Dec. for Q 3, 4, 7,2 respectively
(1) Date: 13 March 1985
(2) Title of Proposal: Low-brightness features of NGC6251

(4) Related previous VLA proposal number: AP66 (request for rescheduling of failed part of AP6
(5) Contact author for scheduling:
R.A. Parley

Address: VLA
(6) Telephone:

TWX:
(7) Scientific category: \square planetary, \square solar, \square stellar, \square galactic, \square extragalactic

(11) Type of observation: \square mapping, \square point source, \square monitoring, \square continuum, \square in join, \square cire point,
\square spectral line, \square solar, \square \square VLBI, \square phased array, \square other \qquad
(12) ABSTRACT (do not write outside this space):

We wish r_{0} be rescheduled for the part of AP66 which foiled due to operation problems with the VLA. The purpose is To examine the spectral grajieris and Faraday rotation properties, as well so the magnetic fiat configurati over the law-brightners regions of the giant radio galaxy NAC62SI. We also wish Yo rest having's lobe magnetic fid model for this source, and to
\qquad NRAO use only
(13) Observing style: Will be present $\begin{aligned} & \square \text { Will prepare files \& } \\ & \text { return to reduce }\end{aligned}$
(14) Reduction: Number: of maps 12 Maximum size of maps \qquad Self -cal maps 12 Private disk pack \qquad (15) Off-site reduction: \square none, \square post map, \square post calibration, \square everything. (16) Help required: $\begin{aligned} & \text { none, } \\ & \text { consultation, } \square \text { friend (extensive help), } \square \text { staff collataborator: }\end{aligned}$

(18) Number of sources 1 (If more than 10 , sources please attach lists. If more than 30 give only selection criteria and LST range (s).')

(19) Special hardware, software, or operating requirements:
(20) Preferred range of dates for scheduling: ..
(21) Dates which are not acceptable:
(22) Please attach a self-contained Scientific Justification not in excess of 1000 words.

When your proposal is scheduled, the contents of this cover sheet become public information. (Any supporting documents are for refereeing only)

NATIONAL RADIO ASTRÓNOMY OBSERVATORY

 Edgemont Road, Charlottesville13 March:1985

TO: Paul Vanden Bout
FROM: Alan Bridle, Rick Perley
RE: Rescheduling of VLA D array observations of NGC6251

He wish to apply for rescheduling of the 'D' array segment of our proposal AP66 for mapping the low-brightness lobe features of NGC625l at 6 and 20 cm with the VLA. This proposal was given time in the ' C ' and ' D ' array seasons in 1983 but the ' D ' array observing was unsuccessful for operational reasons. To support the . resubmission we attach the original proposal, and a map from the: (successful) 'C' array observations.

AP66 called for 'C' array data mainly to define properties of the outer main jet, the counterjet and lobe fine structure, and ' D '
Earray data mainly to define the spectral, polarization, and rotation
"measure characteristics over the extended lobe emission. He: "piggybacked" an 18cm 'G' array run on a $28-\mathrm{hr}$ VLB observation of
: NGC625l which used the VLA in phased array mode; Figure lishows a tapered map from this run, at $25^{\prime \prime}$ resolution. :It clearly
\because demonstrates (a) that the two jets share a distorted s-symmetry, (b) that the counterjet is not a fainter replica of the main jet, but rather that the brightness ratio between the two jets changes with - distance from the core, (c) that the "warm spot" in the west lobe shares the S-symmetry of the jet/counterjet system with a corresponding warm spot at a bend in the counterjet. The last result increases the importance of examining the magnetic and spectral properties of the extended emission to the east of the warm spot in the counterjet (Figure 2), as it is now much clearer that
it the most easterly emission in NGC625l breaks an underlying S-symmetry in the source. The 'G' array 6cm data (required for better signal to noise on the main jet than achieved in our published work) were also of acceptable quality for our present purposes.

Unfortunately, the 'D' array data requested in AP66, taken in June 1983, are almost entirely useless. The observing run:was scheduled just as the BD IFs were being brought into use. Due to various operational problems, the new BD channels were brought up with no delays set, and the AC channel delays. were improperly determined. The result was that only the parallel-hand data were useful at 6 cm , while at 20 cm no valid data at all were obtained. We therefore request rescheduling of the ' D ' array segment of this proposal for 12 hrs in the next 'D' array season.

ORIGINAL PROPOSAL APG6

T0:
FROM:
M.S.Roberts

DCO
otarasionte

DATE:
4 October 1982
SUBJECT: Proposal to observe the low-brightness features of NGC6251 at 6 and 20 cm with the VLA in the C and D eonfigurations.

We request the use of the VLA for 24 hrs in each of the C and D configurations to map total and polarized intensities of the counterjet and lobes of the large radio galaxy NGC6251. The proposal is the first of a new program intended to explore aspects of the source revealed by, or related to, our previous atudy of the bright jet in this object.

BACKGROUND

NGC6251 is a 14 th-magnitude elliptical galaxy with a redshift of 0.023 associated with a radio source 1.1 degrees in overall extent. For $\mathrm{H}=75 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$ the linear diameter of the source is 1.7 MpC , making it one of the largest known radio galaxies. A high-brightness jet some 120 kpc long was discovered in the source by Waggett, Warner and Baldwin (1977). We observed this jet uaing the A configuration at 21 and 18 cm , a hybrid (construction) configuration at 20 and 6 cm , and a D configuration "snapshot" at 20 cm . The main results of these observations were:

1. Evidence that the jet may be interacting with a surrounding medium; it expands in several discrete steps, and exhibits lateral oscillations which are readily interpreted as Kelvin-Helmholtz instability modes of a confined jet.
2. Evidence that the surrounding medium may be an ionized magnetosphere of NGC6251: there are large and complex Faraday rotation gradients over the central parts of the source. These gradients cannot be due to thermal electrons and fields in the jet because there is no aignificant depolarization between 21 cm and 6 cm . Rather, the gradients, which are largest closest to the center of NGC6251, must arise in material between us and the jet but associated with NGC6251.
3. Detection in the D array snapshot of a weak counterjet whose intensity 1/250th that of the main jot further from the core. The reality of this counterjet is confirmed by a WSRT 610 MHz map at 50 resolution.
4. Mapping of the magnetic structure of the jet in detail: the projected ield contains both parallel and perpendicular components, with deep field-parallel layers at the edges of the field-perpendicular configuration in the more expanded outer regions of the jet. There are also regions of oblique projected field which can be explained only if there are departures from axial gymmetry in the internal gtructure of the jet.

These resulte will soon be submitted to the Ap.J'. They raise questions bout NGC6251 which we wish to explore using various combinations of frequencies and configurations, now that reduction and interpretation of the earlier data are complete. Some of the new observations require modes of operation or equipment not yet inatalled at the VLA; these will be requested as the VLA becomes capable of supporting them. This request is for the parts of the ongoing study which can be done now.

STUDIES OF THE COUNTERJET
We wish to determine the internal atructure, collimation and polarization
properties of the counterjet, for comparison with those of the main jet. The counterjet is too faint and resolved to be detectable at A or B configuration resolution at 20 cm , but is very clear in our D configuration snapshot at this requency (Figure 1). We require a mixture of C and D configuration observations at 20 cm and 6 cm to examine its structure in both total and polarized intenaities. The symmetries of its expansion, brightness-widt evolution, ine main jet are all potion and Faxaday rotar properties.
 halo are jes counter jet and the 11 and 3 hra duration il 18 cm and 6 cm to addrese these matters

THE OUTER REGION OF THE MAIN JET

the outer region of the main jet
The parts of the main jet beyond about ${ }^{1}$ from the core (see Figure 1), are resolved out in our earlier high-resolution observations but only poorly resolved in the D configuration shapshot at 20 cm . Important questions about the transition between the main jet and the northwest lobe cannot be answered using the present data sets. What is the path and brightness evolution of the jet as it enters the northwest lobe? What is the magnetic structure in the region where the jet "ends", presumably sharing its momentum with the surrounding material ? Can the jet be traced continuously to the "warm spot" at the northwestern edge of the source, and what is the structure of this warm spot ? The latter provides an indirect conatraint on the jet velocity; if the jet doe reach the warm apot, it presumably has eufficient thrust to overcome the internal pressure of the spot. We therefore require maps of the northwestern lobe with better resolution than at present, but with sufficient short spacings to samplat and separate structural scales from $10^{\prime \prime}$ to 10^{\prime} (see Figure 1). We need to combine C and D configuration observations at 20 cm and 6 cm of at least one more phase center along the probable path of the jet in the northwestern lobe.

rotation measure and spectral gradients in the lobes

There is evidence from the Cambridge $151-1417 \mathrm{MHz}$ observations of the lobe that the emiosion between the bright jet and the northwest warm spot has a spectrum similar to that of the jet, but that the more diffuse lobe emission awa from the jet has a spectrum 0.5 gteeper. Our data show that there is no
 We wish to for have established for the jet. The RM data will test our interpretation of the RM have estab in the gradients or of NGC6251 WSRT 610 MHz data shou that the lobes are gignificantly polarized
3 .: and uill be used for comparison with the VLA 20 cm observations. The C configuration observations will provide higher-resolution data for the more compact lobe features at 20 cm for comparison with the VLA D configuration data at compact lobe features at 20 cm for comparison with the VLA
6 cm . They will also be used to measure the RMs of about five unresolved background sources which are viewed through the lobes.

The lobes of NGC6251 will also be a good arena in which to test the lobe magnetic field model of laing (1980), wherein the field is sheared so as to be tangential to the surface of the lobe, with no radial component, but is otherwiae random. To test this model quantitatively, we need to establish the projected

\qquad

 ved
\qquad
+

-

al

ron

 ,

RM,

ent

magnetic field direction over the lobe, and to check for depolarization over it. Previous tests of the model in Ma4 (Laing and bridie, in preparation) met with different degrees of success on the two different sides of the same source; again part presence of large-scale RM gradients believed to be associated with the parent object. NGC6251 is suitable for further tests of the laing model, as ita lobes are bright, two-dimensional structures over which the VLA can map many pixels. To determine polarization structure (with typical degrees of polarization of 20\%), 1-hr integrations at 50 MHz bandwidth are required for geveral phase centers at 20 cm . Due to the 1.1 degree size of the source, three separate phase centers are required for the northwest lobe, counterjet, and southeast lobe observations, even at 20 cm .

time request

He request 24 hrs in each of the D and C configurations of the VLA for these observations. In the D configuration, we will spend about 1 hr at each of three phase centres at 20 cm , and the balance of the time at 6 cm . We will be able to specify the time and frequency distribution of the C coniguration observatio
 estimate our of 106251 , 24 hr run in

REFERENCES

Laing,R.A. 1980. M.N., 193, 439.
Haggett, P.C, Warner, P.J., Baldwin, J.E. 1977. M.N., 181, 465.

Figure 1

From:
VAX3::RICK 12-JUN-1983 16:00
To: Subj:

CVAY: : BRIDLE
chagrin, embarassment, shame
I have just scanned our run from last night, and discovered the observe file had a crucial error. The A/C Fluke setting was 12.5 MHz too high, causing the 50 MHz passband to contain only 37.5 MHz width of data. Fortunately, this only occured on the calibrator $1803+784$. All the observations of NGC6251 are all right, as are the observations of 3 C 48 and 3Cl38. It appears that only polarization calibration will suffer, and we'll probably be able to recover that from next week's run.

I cannot explain how this-happened. I used SOS to substitute 100.0 and 200.0 (the correct.settings) for 112.5 and 212.5 (the old setting used for the C array data). All the 212.5 did change to 200.0 (hence, the B / C
oops, I mean B/D data are o.k.), however, only the li2.5 Fluke, settings on cards of the source, 3C48, and 3C138 changed. Somehow, I goofed. Of course, the real error was in the lack of adedquate final checking, and for tl I am truly sorry. I just hope we can recover the polarization calibration next week.

The operator said he saw no interference. I won't know for sure unti: tomorrow. I!ll make a quick map, and let you know.

From: VAX3::RICK II-JUN-1983 I5:21
To: CVAX: : BRIDLE
Subj: New observations
I used my two hours of test time to integrate on the following frequencies: 4885, 4835, 1665, 1515, 1485, and 1435 MHz . All were pretty clean except 1435 MHz , which had a lot of sporadic RFI, and one scan which was completely blown away. Thus, I believe we should do the following for tonight:

1) Observe the core at $4885 / 4835 \mathrm{MHz}$. No problem here.
2) Observe near the warm spot for 1 hour.
3) Observe the core at $1665 / 1515 \mathrm{MHz}$.
4) Observe the S lobe at $1465 / 1515 \mathrm{MHz}$.

In all cases, the more important/more reliable frequency is in the $A-C$ channels. I thought that 2 hours on the core at 6 cm , and 1.5 hours at each of the 20 cm pairs (S lobe and core) plus the 1 hour at the warm spot should do.

I have been mulling over your comment about deferring the 6 cm observations. Sounds good to me from an interference point of view. This (meaning tonight) is a night/weekend run, and much less likely to be zapped

Cancel the above argument which I didn't finish. The long run next week is a midnight run. Nevertheless, given the reliability of the 6 cm observations, it makes good sense to test the waters at 20 cm now, on a weekend. I'll make up the file at 20 cm only, using items 3 and 4 above. I'll split the time equally between the two observations. Any comments?

From: VAX3::RICK Il-JUN-1983 10:04
To:
CVAX: :BRIDLE
Subj: New observation
O.K. I'm at the site. It turns out that I have test time starting in one hour. I plan to tune to these new frequencies, and integrate for a while. Of course, I'll use NGC625l as the object to integrate upon. The bug in filler which was ruining all the $4-I F$ data has now been repaired (turned out that the signs of the real and imaginary parts were being reversed), so I can properly calibrate the 2 hours of test data I took on blank sky a couple nights ago. This will tell us the best (i.e. least noisy) frequencies. I'll select the best (subject to careful reading of your comments from yesterday), and'integrate on them for a while, to see if occasion RFI lurks about.

More late. Call the operator to get me.

From: VAX3::RICK 9-JUN-1983 10:13
To:
CVAX: $:$ BRIDLE
Subj: New obs, and B/D IFs.
The B / D ifs are here, and they seem to operate. I ran a few hours of tests to find optimal frequencies. The best contiguous frequencies are 1465 and 1515 MHz . An alternative good pair are 1435 and 1485 MHz . These have the advantage of averaging close to 1465 MHz , the old default frequency. We're observing on Sunday, so we need to consider which pairs we would like. At 6 cm , virtually any frequency can be chosen. 4885 and 4835 MHz seem to work well.

If, on the other hand, we choose to spread our L-band frequencies, I got good results on any frequency except those which overlap 1600 MHz (an enormous internal birdie). I am not in favor of this, however, as we have previously selected (for C array) 'median' frequencies. Furthermore, the noise noticeably increases below 1400 MHz . So, I think either $1465 / 1515$ or 1435/1485 are the best bets. Any preferences? Note that the B/Ds seem to work, but there are a few bugs left, such as bad samplers, which seem to cause high closure errors on a few correlators. The situation is similar to the A / C situation a few years ago.

There is a serious bug either in Filler or Antsol which is causing amazing errors in Antsol listings. I am convinced, however, that it is a software problem, and not due to the 4 IFs per se. The data looks good.

As part of the Bars et al experiment that Pat Crane and I are taking care of (checking the Bars flux scale), we have gotten a fair amount of data on 3C274. My summer student arrived yesterday, and I decided to use this data to cut his teeth on the VAX. We got an impressive map of the halo. The remarkable thing is the evidence for rotation of the jet as a function of scale size. I'll send a copy of the map over the wire to you.

How's the review coming? Haven't heard from you in a few days.

For the S lobe, we used 1452.4

The VLBers do phase the A and C if-s independently, but so long as they use the same antenna for both, and the true $A-C$ phase of that antenna doesn't change, there should be no problem. The potential problem is that the stupid VLB program may take a different reference antenna each time it phases up. It has some criterion by which it decides which antenna is best, and this criterion or criteria does not account for phase jumps. If there were no phase jumps in any antenna, then changing the reference antenna won't hurt the polarization. The danger is in the phase jumps, and as we all know, phase jumps are rather common here. I don't believe there is any record of which antenna was taken as reference, and of course you know that most phase jumps are invisible to the monitoring system. By the way, self-cal also adjust A and C IFs independently, with no deletorious result to polarization.

The only way I can think of to check the behaviour is to list the AC phases for $1803+784$. Pat put in three observations of this source for every observation of NGC6251. Fortunately, $1803+784$ has quite a respectable polarization. We should be able to learn a lot from this. Keep your fingers crossed.

To bad about the glossies. Will bribes help? Interesting info about Jennison.

From: VAX3::RICK
 11-APR-1983 15:11

To:
CVAX: :BRIDLE
Subj: More N6251 Observations
Barry has tentatively scheduled our D-array N6251 observations for Sunday, June 19. Are you able to come for these observations, too? Given that we all leave for Italy shortly afterward, it seems reasonable to assume that you won't be able to come. I think it is also reasonable to presume tha at that time I'll be frantically working to complete my talk! I notice that you're not listed to give a talk at Bologna. Want some compact source data? Blowing hard today. New storm coming in.

Jer velocity estimates in NaC62SI
(a) Steedy-State Energy Balance

$$
F=\left(u_{\text {int }}+\frac{1}{2} \rho_{j} v_{j}^{2}\right) v_{j} \cdot \pi R_{j}^{2}=\mathrm{L}_{00 x} / \varepsilon
$$

$$
L \sim 10^{24} \subset 1480 \rightarrow
$$

$$
\begin{aligned}
& L \sim 10^{-4+} \odot 1480 \rightarrow \\
& L_{\text {lobe }}=1.1 \times 10^{32}\left(\bar{m}_{\text {max }}(\mathrm{Hz})\right)^{0.3}
\end{aligned}
$$

$$
v_{\text {max }}=10 \mathrm{GHz}
$$

Lobe $\sim 10^{24} \mathrm{~W} / \mathrm{Hz} / \mathrm{ster}$ at $1480 \mathrm{mHz} \rightarrow 1.1 \times 10^{35}$ Wats.
(4) $=227^{\prime \prime} \quad \triangle R M<S \rightarrow n_{e}<2 \times 10^{-4} \mathrm{~cm}^{-3} \equiv 200 \mathrm{~m}^{-3}$

$$
\begin{aligned}
& \rho_{j}<3.35 \times 10^{-31} \mathrm{~kg} / \mathrm{cm}^{3} \equiv 3.35 \times 10^{-25} \mathrm{~kg} / \mathrm{m}^{3} \\
& U_{\min } \sim 6 \times 10^{-13} \mathrm{~J} / \mathrm{m}^{3} \\
& u_{\text {min }} / \mathrm{c}^{2} \sim 6.68 \times 10^{-30} \mathrm{~kg} / \mathrm{n}^{3} \\
& R_{j} \sim 6^{11} .5 \sim 2.8 \mathrm{kpc} \sim 8.6 \times 10^{19} \mathrm{~m} \\
& A=\pi R_{j}^{2}=2.35 \times 10^{40} \mathrm{~m}^{2}
\end{aligned}
$$

Hence: $\quad\left(6 \times 10^{-13}+\frac{1}{2} \times 3.35 \times 10^{-25} v_{j}^{2}\right) v_{j} .2 .35 \times 10^{40}=\frac{1.1 \times 10^{35}}{\varepsilon}$

$$
1.28 \times 10^{-7} v_{j}+3.59 \times 10^{-20} v_{j}^{3}=1 / \varepsilon
$$

$\begin{array}{cccccccc}\text { If: } & \varepsilon=1 & 0.1 & 0.05 & 0.04 & 0.03 & 0.01 & \\ v_{j}= & 2640 & 6350 & 8080 & 8730 & 9630 & 14000 & \mathrm{~km} / \mathrm{s}\end{array}$
hight jet $\frac{1}{2} \rho_{j} v_{j}^{2} \ll u_{m i n} \quad V_{j} \rightarrow 7801 / \mathrm{km} / \mathrm{s}$
Heary jet $\frac{1}{2} \rho_{j} r_{j}^{2} \gg u_{m i} \quad v_{j} \rightarrow \frac{3031}{\sqrt[3]{\varepsilon}} \cdot\left(\frac{3.4 \times 10^{-25}}{\rho_{j}\left(227^{11}\right)}\right)^{1 / 3} \mathrm{~km} / \mathrm{s}$
(4

$$
\begin{aligned}
=32^{\prime \prime} \quad \text { Depp } \rightarrow \quad & n_{e}<4 \times 10^{-3} \mathrm{~cm}^{-3} \\
& \rho_{j}<6.7 \times 10^{-30} \mathrm{~kg} / \mathrm{cm}^{3} \equiv 6.7 \times 10^{-24} \mathrm{~kg} / \mathrm{m}^{3} \\
& u_{\min } \sim 5.4 \times 10^{-12} \mathrm{~J} / \mathrm{m}^{3} \\
& R_{j} \sim 1^{11} 75,0.75 \mathrm{kpc} \sim 2.31 \times 10^{19} \mathrm{~m} \\
& A=\pi R_{j}^{2}=1.69 \times 10^{39} \mathrm{~m}^{2}
\end{aligned}
$$

Hence $\left(5.4 \times 10^{-12} * \frac{1}{2} \times 6.7 \times 10^{-24} v_{j}^{2}\right) v_{j} \cdot 1.69 \times 10^{39}=\frac{1.1 \times 10^{35}}{\varepsilon}$

$$
\begin{aligned}
& 8.28 \times 10^{-8} v_{j}+5.14 \times 10^{-20} v_{j}^{3}=1 / \varepsilon \\
& \begin{array}{ccccc}
\text { If } \varepsilon=1.0 & 0.1 & 0.04 & 0.01 & \\
v_{j}= & 2490 & 5710 & 7,800 & 12,400
\end{array} \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

hight jet $\quad v_{j}<\frac{12000}{2} \mathrm{~km} / \mathrm{s}$
Heary jet $v_{j} \geq \frac{2690}{\sqrt[3]{\varepsilon}}\left(\frac{6.7 \times 10^{-24}}{\rho_{j}}\right)^{1 / 3} \mathrm{~km} / \mathrm{s}$

Suppose we accept expansion rete velocity $V_{j} \sim 8000 \mathrm{~km} / \mathrm{s}$

$$
\left.\begin{array}{rl}
\varepsilon & \sim 0.04 \\
\rho_{j} & \sim 6.7 \times 10^{-24} \quad \in \quad \overbrace{}^{1})=32^{\prime \prime} \\
\frac{1}{2} \rho_{j} v_{j}^{2} & =2.14 \times 10^{-10} \mathrm{~J} / \mathrm{m}^{3} \\
u_{\text {min }} & =5.4 \times 10^{-12} \mathrm{~J} / \mathrm{m}^{3}
\end{array}\right\} \underline{=} 9.7: 1
$$

Method (b). Expansion vale.

$$
\begin{aligned}
t_{\text {an } \alpha} & =v_{r} / v_{j} \operatorname{cosi} \\
& =c_{5} / m \cos ^{2} \cos i
\end{aligned}
$$

If the jer is "free" at $\oplus \subseteq \leqslant 17$ ", $\mathrm{Cl} \sim 14$ aithere.
At (a) = 17". frombcH ft, $\frac{\rho_{17}}{\rho_{32}}=\frac{0.25}{0.32}=0.78 \quad \rho_{17}=5.2 \times 10^{-24} \mathrm{~kg} / \mathrm{m}^{3}$
From equipartivien (D) $=17^{\circ} \quad u_{m i}=4.4 \times 10^{-12} \mathrm{~J} / \mathrm{m}^{3}$.

$$
p_{\min }(u s i n g \times 0.86 \text { facior }) \rightarrow 1.26 \times 10^{-12}
$$

Then $C_{S}=\sqrt{\frac{\gamma \phi}{\rho}}=\sqrt{\frac{1.333 \times 1.26 \times 10^{-12}}{5.2 \times 10^{.74}}}=5.68 \times 10^{5} \mathrm{~m} / \mathrm{s}$
Hence $V_{j}=A l_{s}=14 \times 5.68 \times 10^{5}$ sci $\rightarrow 7.95 \times 10^{6} \mathrm{~m} / \mathrm{ssec}$ $\rightarrow 8000 \mathrm{~km} / \mathrm{s}$. seci

NB Benfit issef \rightarrow Mlach ws $=5.4$

$$
v_{j}=3000 \mathrm{~km} / \mathrm{s} .
$$

Method (c). Thrust balance

Warm spot in $50^{\prime \prime} 1446 \mathrm{mHz}$ snepmep - peek $I=33.3 \mathrm{mJy}$

$$
\begin{aligned}
& \theta_{\text {obs }}=1^{\prime} .8 \equiv 108^{\prime \prime} \\
& \theta=\sqrt{108^{2}-50^{2}}=96^{\prime \prime} \text { intrinsic } \\
& R_{H S}=48^{\prime \prime} \rightarrow 20.6 \mathrm{kpe}=6.35 \times 10^{20} \mathrm{~m}
\end{aligned}
$$

Assume 0.7 index $\quad \nu \sim 1 \mathrm{MHz} \rightarrow 1 \mathrm{GHz}$ (Same Erarye as jet)
177 MeV lowest

$$
\begin{aligned}
& B_{e g} \sim 2.6 \times 10^{-6} \\
& u_{\text {min }} \sim 6.18 \times 10^{-14} \\
& p_{H S} A_{H S}=0.86 \times \frac{6.18 \times 10^{-14}}{3} \times \pi \times\left(6.35 \times 10^{20}\right)^{2} \\
&=2.24 \times 10^{28} \mathrm{Nt} .
\end{aligned}
$$

Momentum flux delivered r_{0} lobe is $\rho_{j} \xi^{2} v_{j}^{2} . A_{j} \quad \xi=\frac{1}{1+\sqrt{\rho_{j} / \operatorname{sem}^{2}}}$
(4) $=227^{\prime \prime}$ parameters
$\Theta=32^{\prime \prime}$

$$
\begin{aligned}
& \left.\begin{array}{l}
\rho_{j}=3.35 \times 10^{-25} \\
A_{j}=2.35 \times 10^{40}
\end{array}\right\} V_{j}=1.69 \times 10^{6}\left(\frac{3.35 \times 10^{-25}}{\rho_{j}}\right)^{1 / 2} \cdot \frac{1}{\zeta} \\
& \left.\begin{array}{l}
\rho_{j}=6.7 \times 10^{-24} \\
A_{j}=1.69 \times 10^{39}
\end{array}\right\} \quad V_{j}=1.41 \times 10^{6}\left(\frac{6.7 \times 10^{-24}}{\rho_{j}}\right)^{1 / 2} \cdot \frac{1}{\zeta}
\end{aligned}
$$

So for $r_{j}=8000 \mathrm{~km} / \mathrm{s}$, need $\} \sim 0.194 \quad \rho_{j} \sim 17$ SIGM at hotshot. Problem $\rho \vee R^{2}$

Method (d)
If it's heary $\quad \frac{1}{2} \rho_{j} v_{j}^{3} A_{j}=\frac{\text { Llobe }}{\varepsilon}$ for evergy balence

$$
\begin{aligned}
& \rho_{j} \xi^{2} V_{j}^{2} A_{j}=p_{H S} A_{H S} \quad \xi=\frac{1}{\sqrt{1+\sqrt{\rho_{j} / \rho I a m}}} \\
& V_{j}=\frac{2 L_{\text {lobe }} \xi^{2}}{p_{H S} A_{H S} C} \\
&=\frac{2 \times 1.1 \times 10^{35} \xi^{2}}{2.24 \times 10^{28} \varepsilon} \\
& \leqslant \frac{9820 \xi^{2}}{\varepsilon} \mathrm{~km} / \mathrm{s} .
\end{aligned}
$$

NGE6251. onrflow argumeir.
$V_{j}^{3}>\frac{2 L_{\text {lobe }} d h s}{\varepsilon M}$

$$
1 y p=3.156 \times 10^{7} \text { see }
$$

Fro Mbor, roke Faber/Gallagher (ApJ, 204, 36:5 C1976))

Sum

$$
\text { Hence iflusumes } 26.8=25 \operatorname{tog}(2 / f O) \rightarrow=5 \times 10^{10} \mathrm{LO}
$$

$H=7 S \rightarrow \tau_{n}=1.3 \times 10^{10} y / s \rightarrow 10^{10} m_{0}$ availeble" \sim_{10-2} gilecy?
$L_{\text {ope }}=1.1 \times 10^{35} \mathrm{Wetts} \quad d_{\mathrm{NS}}=46=960^{\prime \prime}=412 . \mathrm{pec}=127 \times 10^{22}$.

$$
=656
$$

For $\varepsilon=0.04$, this gion $\quad V_{j}>1640 \mathrm{~km} / \mathrm{s} \cdot V_{j}=800 \tau^{2} \approx 6 \times 10^{7} \mathrm{ys}$

$$
\tau>3.1 \times 10^{\circ} \frac{1}{}
$$

$d m / d t \approx 320 \mathrm{~mol} / \mathrm{yc}$ (hase jers)
Nole, cond have foke ofer lote, $d=38^{4} \rightarrow V_{j}>3 \sqrt{38} \times 520 / \sqrt{8}$

$$
\rightarrow 694 / 3 \sqrt{2} \text { 上ins } \sqrt[3]{2}
$$

Whet's the oprimum set of parameress for leary N6251?
We here various estimeres:

1) Energy balance $\begin{gathered}\begin{array}{l}\text { E } \\ (1)=32^{\prime \prime}\end{array}\end{gathered} v_{j}=\frac{2690}{\sqrt[3]{\varepsilon}}\left(\frac{6.7 \times 10^{-24}}{\rho\left(32^{\prime \prime}\right)}\right)^{1 / 3} \mathrm{~km} / \mathrm{s}$
2) Thmst $V_{j}=\frac{1400}{\xi}\left(\frac{6.7 \times 10^{-24}}{\rho\left(32^{11}\right)}\right)^{1 / 2} \mathrm{~km} / \mathrm{s}$
3) Expansion $v_{j}=8000 \mathrm{sec}(i)\left(\frac{5.7 \times 10^{-24}}{\rho\left(32^{1}\right)}\right)^{1 / 2} \mathrm{~km} / \mathrm{s}$
4) Mars flow $\quad v_{j} \geq \frac{520}{\sqrt[3]{\varepsilon \varepsilon_{0}}}\left(\frac{5 \times 10^{9} m_{\theta}}{m_{\text {tot }}}\right)^{1 / 3} \mathrm{~km} / \mathrm{s}$

To balance energy and thrust we need $\frac{2690}{\sqrt[3]{\varepsilon}} \sim \frac{1400}{\zeta}$ roughly

$$
\xi^{3} \sim 0.14 \varepsilon
$$

So even for $\varepsilon=1$, ξ must be $\leqslant 0.52$
This requires $\rho_{j e r} \gtrsim 0.9 \rho_{\text {sem }}$.

To balance thrust and expansion we need

$$
\begin{aligned}
8000 \sec (i) & =\frac{1400}{\zeta} \\
\zeta & =0.18 \operatorname{sog}(i)
\end{aligned}
$$

This is much harder, and requires $y<0.18$

$$
\text { i.e. } \rho_{j}>20 \times \rho_{\text {IGN }} \text { !! }
$$

This is a big problem. It means we must have underestimated pHSAHS somehow, if it's in pressure equilibrium. Either the hot spor is fer from equipartition, or we have got very bed paramerew for it.
As $v_{j} \sim \sqrt{p u s}$, increasing v_{j} by a factor 57 comesponos to increasing pus by a fador~33. This hot spot is ~1/33 the pursue we would have expected. To balance ere ry budger and expansion

$$
\begin{array}{rlr}
\frac{2690}{\sqrt[3]{\varepsilon}} & \sim 8000 \sec i & \\
c & \sim 0.04 \operatorname{sos}^{3} i & \cos ^{3} i 巴\left(\frac{10^{\circ}}{}=0.96\right. \\
20^{\circ} & 0.83
\end{array}
$$

This is the constraint we he d in the draft paper, with $i=0^{\circ}$.
Putting this in mars flow, $\frac{656}{0.3400 i \sqrt[3]{\varepsilon_{0}}}\left(\frac{5 \times 10^{9} M_{0}}{M_{\text {tot }}}\right)^{1 / 3}=\frac{8000}{\cos i}$

$$
(0.24)^{3}=\frac{1.4 \times 10^{-2}}{5 \times 10^{9} \mathrm{M}_{\odot}}
$$

So $\quad 7.0 \times 10^{7} M_{\odot}=\Sigma_{0} M_{\text {tot }}$ - ejecled mars.
$\varepsilon_{0} \sim 0.1 ?$

$$
M_{\text {tot }} \sim 4.5 \times 10^{8} M_{\odot} \text {. fuel craileble. }
$$

Things would be much simpler if we had a value for $p_{H S} A_{H S}$ the was $\sim 25 \times$ greater.
or if the jet he been decelercred? by a factor of five berween the ($) \sim 227^{\circ}$ region ad the hot spot.
So if the scele is \sim correct, need $f^{4 / 7} \sim(1 / 25)$

$$
f \sim 0.0036!
$$

i.e. Here has to be something much smelled out there carvaining mos of the Jinx?

Suppose we let

$$
\begin{aligned}
& v_{j}=8000 \mathrm{~km} / \mathrm{s} \\
& \varepsilon=0.04
\end{aligned}
$$

$$
\begin{aligned}
\text { At } \Theta=32^{11} \quad d m / d t=\rho_{j} V_{j} A_{j} & =6.7 \times 10^{-24} \times 8 \times 10^{6} \times 1.69 \times 10^{39} \\
& =9.06 \times 10^{22} \mathrm{~kg} / \mathrm{s} \\
\left(1 \mathrm{M}_{0} / \mathrm{yr}=\frac{1.989 \times 10^{30} \mathrm{~kg}}{\left.3.156 \times 10^{\mathrm{sec}}=6.30 \times 10^{22} \mathrm{~kg} / \mathrm{s}\right)}\right. & =1.44 \mathrm{~m} / \mathrm{yr} \\
\Theta=227^{11} & =3.35 \times 10^{-25} \times 8 \times 10^{6} \times 2.35 \times 10^{40} \\
& =1.00 \mathrm{Mo}_{0} / \mathrm{yr} .
\end{aligned}
$$

Suppose we set

$$
\begin{aligned}
& S_{\text {SEM }} V_{H S}^{2} \sim p_{H S} \\
& \rho_{\text {IER }} \sim 10^{-26} \mathrm{~kg} / \mathrm{m}^{3} \\
& p_{H S} \sim \frac{0.86 \times 6.18 \times 10^{-14}}{3}=1.77 \times 10^{-14}
\end{aligned}
$$

then $V_{H S}{ }^{2}=1.8 \times 10^{12}$

$$
V_{H S}=1.3 \times 10^{6} \text {, or } 1300 \mathrm{~km} / \mathrm{s} \text {. }
$$

So there is no difficulty providing van pressure for confinement at this density.

Synchrohon sceles.
Inner fer $B \sim 25 \mu$ game 5 enz $\rightarrow 3.5 \times 10^{9} \mathrm{eV} \tilde{\tau s}_{\text {sjech }} \sim 3.79 \times 10^{6} \mathrm{yrs}$.
At $8000 \mathrm{~km} / \mathrm{s}$, $\tau_{\text {synch }}$ is 9.57×10^{20} metien

$$
\sim 3.1 \times 10^{4} \mathrm{pe}=31 \mathrm{kpe}=72^{11}
$$

Outerjet $B \sim 7 \mu$ gawn

$$
\begin{aligned}
5 G u z \tau_{\text {synch }} & \sim 2.56 \times 10^{7} \text { ys. } \\
\text { At } 8000 \mathrm{~km} / \mathrm{s}, & \rightarrow 6.46 \times 10^{2} \text { mertes } \\
& \rightarrow 2.1 \times 10^{5} \text { pe } \\
& \rightarrow 488^{\prime \prime} .
\end{aligned}
$$

Therefore not surprising Her we see no specimel grodiers, as even if all Senz partichs luo bean gererered or Ne calo transport reem at ar sorolanls sloges ferrer then we ge tlen due to ogehatea lesses.

Deflection of NGe6251 jer.
Whet angle does it reflect through?
Radius I curvature for the WRRT met is $\sim 10^{\prime} \sim 600^{\prime \prime}$ $\sim 257 \mathrm{kpe}$

$$
v_{j}=\left(\sqrt{\frac{\rho_{i \operatorname{Im}} r_{c}}{\rho_{j} h}}\right) v_{g}
$$

$$
r_{c}=257 \times 3.08 \times 10^{19} \mathrm{~m}
$$

Inside the 30 Ape secede $I 8 \mathrm{~m} r_{c}=$ large: (jor straight r)
Owrorite. $h \sim d_{j e r} \sim 16^{\prime \prime}$ m

$$
v_{j}=v_{g} \sqrt{\frac{\rho_{\text {Ier }}}{\rho_{j}} \cdot \frac{600}{16}} \sim 6 v_{g} \sqrt{\frac{\rho_{\text {Ier }}}{\rho_{j}}}
$$

Using our estimates, we heave SIam $/ p_{j} \sim 3 ? \quad v_{j} \sim 10 v_{g}$
Don't know v_{g}, bur unlikely r_{0} be $>1000 \mathrm{~km} \cdot \mathrm{~s}^{-1}$

$$
v_{j} \sim 10,000 ?
$$

If we use o h ~ jer diameter er hor spar $\quad h=96^{\prime \prime}$

$$
v_{j}=v_{g} \sqrt{\frac{\rho \operatorname{lem}}{g_{j}} \cdot \frac{600}{g_{6}}}=2 \cdot 5 \sqrt{\frac{\lim }{\rho_{j}}} v_{g}
$$

Re your comments on the power spectra:
Indeed the angle data generally give better spectra (in terms of significant peaks) than the deflection data. This is an important point, as it means that the deflections ARE growing with distance from the core, in general.

When estimating significance, it is important to compare spectra at the same resolution. The only spectra whose significance should be judged from the Gaussian-noise spectrum at the front of the ones I sent you are the 256 -resolution spectra. The reason why the 0.19 r.u. peak in the first spectrum looked puny is because that was a 128-resolution spectrum. It looks o.k. compared with the noise spectrum at its resolution (which, of course, I didn't send you !).

I don't know what to make of the broader peaks. They usually resolve at higher resolution into numbers of smaller peaks. I tend to think we should look at the peak excursions from the LOCAL MEAN LEVEL in the power spectrum, in which case these broad peaks are not as significant. Certainly they correspond to "things" in the spectra, whether real oscillations or not, which are not simple harmonic in the way that naive Kelvin-Helmholtz modes would be. I have therefore focused more on the "sharp" peaks so far.

The coming and going of peaks as we vary the distance range is not surprising - I could pick some small distance ranges out of the data and really blow up individual spectral peaks - e.g. the 31" oscillation at the beginning of the "outer" jet. In general Ifeel happier about spectra which exclude the angle data from the first $10^{\prime \prime}$ or so from the core, where we have those very rapid oscillations that decay away. These are obtained by dividing very small deviations by very small distances, and I am suspicious about their reality. Pity we can't carry the errors in individual points through the power spectrum analysis. I do feel the spectra with the close-in angle data excluded are more trustworthy, though.

The "averaged angle" plots are from data where I first plotted all of our results at different resolutions on the same scale (as in the Figures for the paper), then drew an "average" curve through by eye. That curve was then read off every " " $^{\text {" }}$ along the jet to get the data whose power spectra were shown. This is o.k. over a limited range of distances from the core - otherwise the effective resolution of the data varies somewhat even though its angular spacing doesn't.

I'll do some more quantitative things regarding statistical significance, then get back to you with revised text and some more power spectrum examples.

I'm starting to revise the Discussion section now. One of the first things I looked at is whether the Chan-Henriksen model we fitted should in fact have "detached" from the confining pressure according to Bob Sanders' criterion. According to his power-law expression it should have done, but according to the detailed criterion (local expansion velocity becoming locally supersonic) it shouldn't. I think the difference lies in the fact that his criterion as given in his paper is in fact only ASYMPTOTICALLY correct. In the 'real' jet, the external pressure changes before the jet has had TIME (distance from the core) enough to detach. I am therefore happier about our use of the CH model than I was when I talked to you from Queen's, but will look into this some more. What is clear is that if the nozzle was somewhat lower than we have modelled it, the jet might have detached
time we hit it with the "halo" pressure - generating the reconfinement shocks that Bob's páper was basically about. More to follow as I think it through and do a small number of further sums.

I got a letter from Jean-Luc Nieto with preprints of his NGC625I paper, which has been rejected once. His pictures certainly don't show very much in the form he sent them to me, but he says he has some more observing time coming up soon, and we will keep in contact.

More ski holidays, eh ? Enjoy it while you can !

To:

 CVAX: :BRIDLESubj: n6251
I have received your message, and am about to print the new version. I have looked over the deflection spectra and must confess that I'm a little worried about the changes in the significance of the peaks. For example, in the second plot (1.3" data, all distances), do we consider the broad peaks at 0.33 and 0.45 reciprocal units significant? They (especially the former) are almost as significant as the marked peak at 0.19 units (5.8"). Furthermo comparing to the Gaussian noise plot above, none of the peaks seems big enoug Use of 256 resolution does seem to help, though as the next plot (\#3) does seem to enhance the "proper" peak at 0.19 r.u. (reciprocal units). Looking through the remaining plots, I notice that the last three (all at 2" separation) show interesting differences. The second of these shows a semisignificant peak at 0.32 r.u. This peak also shows up in the first of these three plots, although at a lower level. However, the last of these plots has no trace of said peak - in fact, there's an enormously deep trough! It seems that restriction of the range has made a great difference. This last plot is by far the most convincing in terms of the significance of the various peaks we have previously identified. By "averaged angle", do you mean that the points are averages of nearby measured values?

It seems to me that the angle data gives a better spectrum than the deflection data.

Some further power spectrum thoughts -
I tried a set of different Gaussian random number streams, each 100 points long, with the power spectrum analysis program at 256 resolution. All of them gave basically similar "phoney peak" statistics. Features of width several channels and peak amplitude five or more times the average of surrounding channels cropped up about five times per spectrum. Similar features with peak amplitude seven or more times the average of surrounding channels cropped up once per spectrum. We could therefore be pretty sure of anything that was as much as eight or nine times the surroundings; very sure of anything ten times the surroundings. I'll go through my individual 6251 spectra now and see which ones survive the test.

They're forecasting snow here now. We shall see.

NGC6251 X-ray hminosity [from Bill Ku's 22.000s of Einstein IPC data]

$$
z=0.023, H_{0}=75 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc} \rightarrow D=92.4 \mathrm{Mpc}=92.4 \times 10^{6} \times 3.0856 \times 10^{18} \mathrm{~cm}
$$

$$
=2.853 \times 10^{26} \mathrm{~cm}
$$

"Nuclear" x-ray source is $1.4 \times 10^{-12} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec}[0.5-4.5 \mathrm{keV}]$ - IP.

$$
\begin{aligned}
L_{x} & =1.4 \times 10^{-12} \times 4 \pi \times\left[2.853 \times 10^{26}\right]^{2} \\
& =1.4 \times 10^{42} \mathrm{erg} / \mathrm{s} .
\end{aligned}
$$

Halo is $\leqslant 15 \%=2.1 \times 10^{41} \mathrm{erg} / \mathrm{s} . \quad\left(\sim 5^{\prime}\right.$ radius), ie. $\sim 154 \mathrm{kpc}$ radius.
Minimum jer pressure $=0.86$ eq, hence $n_{\text {min }}=0.86 n_{\text {eq }}$ for confinement, given T

$$
L_{\min }=0.74 \mathrm{Leq}
$$

Taking our old "hab" values

$$
\begin{aligned}
& T=4 \times 10^{7} \mathrm{~K} \\
& L_{\times} \underline{\text { was }} 2.0 \times 10^{42} \rightarrow \frac{1.5 \times 10^{42} \mathrm{erg} / \mathrm{s} .}{\text { within } 50 \mathrm{kpc}\left(116^{\prime \prime}\right)}
\end{aligned}
$$

Angular resolution of IPC is: $99^{2} 05-4.5 \mathrm{keV}$, ie. 42 kpc .
Hence their "nuclear sonne" is our core + some halo.
Q. How much of our halo is well inside IPC "bean"?

$$
\text { of } M 87 \sim 1.5 \times 10^{43} \text { erglsec }
$$

Table 4
0.5 - 4 keV luminosity and mass of media requited to conphe Nacg2si jet

Assumed isothermal temperature

90% of the predicted X-ray luminosity would originate within 50 kpo of the center of NECG251 for the "halo" component, ana within 1 kp of the "core" component Divide Guminesilies by +352 Ms $\sim+5 \times 10^{43}$

Mass in the beric RM means.
$\Delta R M \sim 70 \mathrm{ras} / \mathrm{m}^{2}$ across $L \sim 70^{\prime \prime} \sim 30 \mathrm{kpc}$.
So:

$$
\begin{aligned}
R M & =8.1 \times 10^{5} \times \bar{n}_{e} \times 10^{-6} B_{-6} \times 30 \times 1000 \\
\overline{n_{e}} & =0.00288 \mathrm{~cm}^{-3} \\
\bar{\rho}_{e} & =\bar{n}_{e} \mathrm{mp} \sim 4.818 \times 10^{-24} \mathrm{~kg} / \mathrm{m}^{3} \\
M & =\frac{4}{3} \pi \bar{\rho}_{e} R^{3} \\
& =\frac{4}{3} \times \pi \times 4.818 \times 10^{-24} \times\left(3 \times 10^{4} \times 3.0857 \times 10^{16}\right)^{3} \\
& =\frac{1.60 \times 10^{40}}{B_{-6}} \mathrm{~kg} \\
& =\frac{8.0 \times 10^{9} M_{0}}{B_{-6}}
\end{aligned}
$$

Check Rick's $\triangle R M$ limit to ne.

$$
\begin{aligned}
& \text { Take } \Theta \sim 240^{\prime \prime} \quad \Delta R M<5 \mathrm{rd} / \mathrm{m}^{2} \\
& \text { Bes } \sim 9 \times 10^{-6} \text { ganss } \\
& \Phi^{\prime} \sim 14^{\prime} \sim 6000 \mathrm{p} \\
& R M=8.1 \times 10^{5} n_{e}\left(\mathrm{~cm}^{-3}\right) 3 \text { (ggass) } L_{p e} \mathrm{rad} / \mathrm{m}^{2} \\
& n_{e}<\frac{5}{8.1 \times 10^{5} \times 9 \times 10^{-6} \times 6000}<1.1 \times 10^{-4} \mathrm{~cm}^{-3}
\end{aligned}
$$

If $B_{1} \sim B_{1} \sim B_{e q}$!

Thy actuel CH config:? (A) $=227^{\prime \prime}$
From the CH fic, FWHM of convolved jet $=42.4+27.7=70.1$ units normelisction of compure unirs is $\frac{1}{70.1} \times 13^{\prime \prime} .4 \times 0.429 \mathrm{kpc}$

$$
=0.082 \mathrm{kbc} / \mathrm{cell}=82 \mathrm{pc} / \mathrm{cell}
$$

$$
\begin{aligned}
\text { Now put Beq } \sim \sqrt{{\overline{\bar{B}_{\mathrm{CH}}}}^{2}+B_{\text {vand }}^{2}} & \sim \sqrt{\left(\frac{1}{3} B_{0}^{2}+\left(0.35 B_{0}\right)^{2}\right.} \\
& =0.61 B_{0}=9 \times 10^{-6} \text { gamo } \\
B_{0} & =14.7 \times 10^{-6} \text { gauro. }
\end{aligned}
$$

Hence ROT $=8.1 \times 10^{5} \mathrm{ne}\left(\mathrm{cm}^{-3}\right) \times 0.04 \times 14.7 \times 10^{-6} \times 82$

$$
\begin{gathered}
=39.05 n_{e} \\
\text { ROT }=0.0075 \equiv 1.9 \times 10^{-4} \mathrm{~cm}^{-3}
\end{gathered}
$$

Out at : $\theta \sim 227$
$n_{e} T \sim 2 \times 10^{3}$ [flor the prese curve fit oo confriement]

$$
\begin{aligned}
& \left\lceil\sim 3 \times 10^{-7} \sim n_{1} \sim \frac{2}{3} \times 10^{-4}\right. \\
& \sim 6 \times 10^{-5}, \mathrm{~cm}^{-3} \quad\left[\text { we used this for }(A)=240^{\prime \prime}\right] \text {. } \\
& \text { quick's 'rared. ex is }<1.4 \times 10^{-4} \mathrm{~cm}^{-3} \text {. OK }
\end{aligned}
$$

For the equiparition sun, $n_{e} T^{\prime} \sim 1 \times 10^{4}$ between

$$
\rightarrow \quad n_{e} \sim 3 \times 10^{-4} \mathrm{~cm}^{-3}
$$

within them?

Analysis of JEFF X output on "NGC62S1" Θ " $=32$ ".

The parameter we specify is ROT
FARAD $=$ ROT * NCO * BPARL *W/cosI (radians).
i.e. ir is the Faraday depth of a cell 1 unit thick

$$
\begin{aligned}
& n_{e}=n_{e} \text { (max) } \\
& B=B_{R} \text { (max at edge of jet) }
\end{aligned}
$$

All faraday depths then scale to this.

$$
\text { ROT } \left.=8.1 \times 10^{5} n_{e}\left(\mathrm{~cm}^{-3}\right) \lambda_{\text {metres }}^{2} B \text { (gauss) [Lengths along 1.0.s. in } p \mathrm{c}\right]
$$

Cellwidth $W=4 R /(2 N L-1) \quad$ Now $N L=1301$

$$
\begin{aligned}
& R=60 \\
& W=0.0922 \quad 1301 \text { of them } \rightarrow \text { Horal depth of } 120
\end{aligned}
$$

Now from the CH fit, FWHM of convolved jer $=47+49=96$ units i.e. the normalisation here is that compare unirs are $\frac{1}{96} \times 3^{4.75} \times 0.42 \mathrm{gkp}$

$$
\begin{aligned}
& =0.01676 \mathrm{kpc} \\
& =16.76 \mathrm{pc}
\end{aligned}
$$

Now put $B_{\text {eq, }} \sim \sqrt{{\overline{B_{C H}}}^{2}+B_{\text {rand }}^{2}}=\sqrt{\left(\frac{1}{2} B_{0}\right)^{2}+\left(0.75 B_{0}\right)^{2}}$

$$
=0.90 B_{0}
$$

$$
\begin{aligned}
& B_{e q}=2.4 \times 10^{-5} \text { gars } \\
& B_{0}=2.67 \times 10^{-5} \text { gaur. }
\end{aligned}
$$

Then here \quad ROT $=8.1 \times 10^{5} n_{e}\left(\mathrm{~cm}^{-3}\right) \times 0.04 \times 2.67 \times 10^{-5} \times 16.76$

$$
=14.5 n_{e} .
$$

Hence ROT $=0.02 \quad n_{e}=1.38 \times 10^{-3} \mathrm{~cm}^{-3} \quad 37 \% \rightarrow 10 \%$ over profile

$$
\triangle P A \quad 23^{\circ} \rightarrow-17^{\circ}=40^{\circ}
$$

$$
\begin{array}{rl}
=0.04 \quad 2.75 \times 10^{-3} \mathrm{~cm}^{-3} & 37 \% \rightarrow 1 \% \\
& \triangle P A \quad 28^{\circ}-34^{\circ}
\end{array}
$$

[beginning of the frt bounce]

$$
\begin{array}{ll}
=0.06 \quad 4.13 \times 10^{-3} \mathrm{~cm}^{-3} \quad & 32 \% \rightarrow 7 \% \\
& \triangle P A \quad 57^{\circ}-66^{\circ} \quad 123^{\circ}!
\end{array}
$$

[well-developed bounce]

$$
=0.10 \quad 6.89 \times 10^{-3} \mathrm{~cm}^{-3} \quad \text { All }<20 \%
$$

This is not seen $\quad \triangle P A+70^{\circ},-90^{\circ}$ nary $160^{\circ}!!$

If we tho used Cioffi. Jones (1980) we would have concluded the for $D>0.8$ we wow need. $F_{c} \leqslant 2.6$ \qquad
ie, in their unis $2 f R<2.6$

$$
f=1600 n_{e} B \lambda^{2}-m / \mathrm{m}^{2} / \mathrm{kpc}
$$

ie. $1600 n_{e} B \lambda^{2} \cdot(161)<2.6$

$$
\begin{aligned}
& n_{e}<\frac{2.6}{1.61} \times \frac{}{24 \times 0.04} \times \frac{1}{1600} \\
& <1.1 \times 10^{-3} \mathrm{~cm}^{-3}
\end{aligned}
$$

Suppose we ked dore it from the seel model as for NGC315 in willis aral. (1981).

$$
D \sim \frac{\lambda_{2}^{2}}{\lambda_{1}^{2}} \frac{\sin \left(R M \lambda_{1}^{2}\right)}{\sin \left(R M \lambda_{2}^{2}\right)}
$$

$R M=8.1 \times 10^{5} n_{e}\left(\mathrm{~cm}^{-3}\right) B$ (gauss) $L-p c \quad \mathrm{rea} / \mathrm{m}^{2}$
We want $D>0.8$ (say). $\quad \begin{array}{ll}\lambda_{2}=6 \mathrm{~cm} & \lambda_{1}=20 \mathrm{~cm}\end{array} \quad D=9 \times 10^{-2} \frac{\sin \left(R \bar{m} \lambda_{1}^{2}\right)}{\sin \left(R m \lambda_{2}^{2}\right)}$. If $R M=8.1 \times 10^{5} n_{e} \times \frac{2.4 \times 10^{-5}}{\sqrt{3}} \times 1610=\frac{1.81}{3} \times 10^{4} \pi_{e}\left(\mathrm{~cm}^{-3}\right)$

Then $n_{e}=10^{-4} \rightarrow R M=1.81$

$$
D=1.00
$$

$$
n_{e}=10^{-3} \rightarrow R M=18.1
$$

So we would have concluded that $D<0.8$ needs $n_{e} \geq$ $1.6 \times 10^{-3} ?$
$?$

$$
R M=28.4
$$

This would be ~ \sim les than we for finn le randomized CH sum.
If we waxed $n_{e}=4 \times 10^{-3} \mathrm{~cm}^{-3}$ here, we valid ger $R M=125.2$

$$
D=0.21
$$

Conclude from thase simulerions thet $n_{e}\left(32^{\prime \prime}\right) \leqslant 4 \times 10^{-3} \mathrm{~cm}^{-3}$
We uxd $n\left(240^{\prime \prime}\right)=6 \times 10^{-5}$
$\rightarrow n\left(32^{\prime \prime}\right)=26.5 \times 6 \times 10^{-5}$ from BCH relios

$$
=1.6 \times 10^{-3}
$$

\because we are OK for Hardee.
of. Slab approch .- $n \leq 10^{-3}$

$$
\text { Cisfil Iones } \ldots \leq 1.1 \times 10^{-3}
$$

$$
\text { NECG251 } 1662 \mathrm{mHz} \quad 2 " 11 \text { ressen. }
$$

	θ	Φ	$d \Phi / d \theta$	$\langle d / d \theta\rangle$	$<>^{3}$	v_{j}	V_{j} / Φ	$\left(v_{j} / \bar{I}\right)^{2}$	$\left\rangle^{2}()^{2}\right.$	$\log _{10}$
	1.6	(0.12)								
	2.0	(0.1278)	0.020	0.020	8×10^{-6}	1.33	1.0410^{1}	1.0810^{2}	8.6610	. 06
	3	(0.1826	0.055	0.055	1.6610^{-4}	1.80	19.59	97.2	1.6110	-1.79
	4	(0.25)	:0.074	0.074	4.0510^{-4}	2.05	7.98	63.6	2.5810^{-2}	-1.59
	5	(0.35)	0.093	0.093	18.0410^{-4}	2.17	6.20	38.4	3.0910^{-2}	1.51
	6	(0.50)	0.15	0.15	3.3810^{-3}	2.26	4.52	20.4	9110^{-2}	-1.16
	7	(0.85)	0.35	0.35	4.2910^{-2}	2.32	$2 \cdot 73$	7.45	3.2010^{-1}	-0.49
	9	1.35	0.25	0.20	810^{-3}	2.38		3.11	2.4910^{-7}	
	11	1.55	0.10	0.175	15.3610^{-3}	2.43	1.57	2.46	1.3210^{-2}	\%
	15	2.15	0.15	0.15	3.3810^{-3}	2.475	1.15	1.33	4.4810^{-3}	35
	17	2.60	0.225	0.15	3.3810^{-3}	2.487	0.957	0.915	3.0910^{-3}	2.51
	79	2.85	0.125	0.13	$2 \cdot 2010^{-3}$	2.49	0.874	0.763	1.6810^{-3}	2.78
	21	2.95	0.050	0.08	5.1210^{-4}	2.493	0.845	0.714	3.6610^{-4}	-3.44
	23	3.00	0.025	0.03	12.7010^{5}	2.4935	0.831	0.691	1.8710^{-5}	-4.73
	25	3.00	0.000	0.0	10.00					
	27	3.05	0.025	0.025	1.5610^{-5}	2.485	0.815	0.664	1.0410^{-5}	-4.99
	29	3.25	0.100	0.07	3.4310^{-4}	2.48	0.763	0.582	2.0010^{-4}	-3.70
	31	3.40	0.075	0.09	$7.29 \quad 10^{-4}$	2.475	0.728	0.530	3.8610^{-4}	-3.41
	33	3.65	0.125	0.125	1.9510^{-3}	2.472	0.677	0.459	8.9410^{-4}	-3.05
	35	3.90	0.125	0.125	1.9510^{-3}	2.473	0.634	0.402	7.8410^{-4}	11
	37	4.10	0.100	0.110	1.3310^{-3}	2.478	0.604	0.365	4.8610^{-4}	-3.31
	39	4.35	0.125	0.110	$1.33{ }^{10^{-3}}$	2.486	0.572	0.327	4.3410^{-4}	$-3 \cdot 36$
	41	4.50	0.075	0.08	15.1210^{-4}	2.49	0.553	0.306	1.5710^{-4}	-3.81
	43	4.60	0.050	0.06	12.1610^{-4}	2.50	0.544	0.295	6.3810^{-5}	-4.20
	45	4.70	0.050	0.05	1.2510^{-4}	2.51	0.534	0.285	3.5610^{-5}	-4.45
	47	4.80	0.050	0.05	$1.25 \quad 10^{-4}$	2.515	0.524	0.275	3.4310^{-5}	-4.46
	49	4.85	0.025	0.025	11.5610^{-5}	2.52	0.520	0.270	4.2110^{-6}	-5.38
	51	4.90	0.025	0.025	1.5610^{-5}	2.523	0.515	0.265	4.1410^{-6}	-5.38
	53	4.95	0.025	0.025	1.5610^{-5}	2.527	0.511	0.261	$4.0710^{\circ 6}$	-5.39
	55	4.97	0.010	0.010	$1.00 \quad 10^{-6}$	2.531	0.509	0.259	2.5910^{-7}	-6.59
	57	4.95	0.010	0.010	1.0010^{-6}	2.531	0.507	0.257	2.5710^{-7}	-6.59
	59	500	0.005	0.005	1.2510^{-7}	2.532	0.506	0.256	3.2110^{-8}	-7.49
	80	5.05	0.0024	0.0024	1.38810^{-8}	2.53	0.501	0.251	3.4610^{-9}	-8.46
	82	5.1	0.025	0.025	1.5610^{-5}	2.53	0.996	0.246	3.8410^{-6}	-5.42
	84	-5.2	0.050	0.050	11.2510^{-4}	2.532	0.487	0.237	2.9610^{-5}	-4.53
	86	5.32	0.060	10.060	2.1610^{-41}	2.534	0.476	0.227	4.9010^{-5}	-4.31
	88	5.53	0.105	0.105	1.1610^{-3}	2.535	0.458	0.210	2.4410^{-4}	-3.61
	90	5.74	0.105	0.105	1.1610^{-31}	2.537	0.442	D. 195	2.2710^{-4}	3.64
	92	6.0	0.13	0.13	2.2010^{-31}	2.54	0.423	0.179	3.9410^{-4}	3.40
	94	6.4	0.20	0.20	$8.00 \quad 10^{-31}$	12.542	0.397	0.158	1.2610^{-3}	2.90
	36	6.6	0.10	0.10	$1.00 \quad 10^{-3 i}$	2.545	0.386	0.149	1.4910^{-4}	3.83
	98	6.4	0.10	0.10	$1.00{ }^{1.00} 10^{-3}$	2.548	0.398	0.159	1.5910^{-4}	0
	100	6.1	0.15	0.125	1.9510^{-3}	2.551	0.418	0.175	3410^{-4}	3.28
	102	5.9	0.15	0.15	3.38 [10^{-31}	12.553	0.440	0.194	6.5410^{-4}	3.18
	104	6.25	0.225	0.225	1.1410^{-2}	2.555	0.409	0.167	1.9110^{-3}	2.72
	106	6.8	0.275	0.215	2.0810^{-2}	2.557	0.376	0.141	2.9410^{-3}	2.53
	108	6.3	0.25	0.27	1.5610^{-2}	2.559	0.406	0.165	2.5710^{-3}	2. 59
	110	15.8/6.3	0.25	0.26	1.5610^{-2}	2.561	0.916	10.173	27010^{-3}	257
	112	16.8	0.25	0.25	1.56 10 0^{-2}	2.563	0.376	0.142	2.2110^{-3}	-2.65
	114	7.15	0.225	0.25	1.410^{-2}	2.565	0.354	0.125	1.4310^{-3}	-2.85
	116	7.9	0.325	0.30	3.4310^{-2}	2.561	0.325	0.106	3.6210^{-3}	-2.44

```

HBC turbulence - NGC6 251 cont'd.


Firs to NGCG2SI \(1480 \mathrm{MHz} 15^{\prime \prime}\)

-Burbide GR, ODenSL ApJ, 178,583 (1972)
- Levertao Roeder RC JRASC, 66, 1111 (1972)
Power Speerna of NGCb2S1 oscillarions.
Thearericel deflection probatmeity for random noise:
\[
\pi\left(p>p_{0}\right) \Rightarrow 1-\left\{1-\exp \left(-P_{0}\right)\right\}^{n}
\]

Where \(n\left(k_{1}<k<k_{2}\right)=\left(\frac{k_{2}-k_{1}}{2 \pi}\right)\left(\theta_{2}-\theta_{1}\right) \quad \theta_{1} \rightarrow \theta_{2}\) dork rang \(k_{1}-k_{2}\) spent rong-
\(\sim 0.5 \times 98 \sim 50\) in our case.
So
\[
\begin{aligned}
& \pi \sim 1-\exp \left(-50 \exp \left(-p_{0}\right)\right) \\
& \sim 0.29 \text { for } P_{0}=5 \text {, ie. }
\end{aligned}
\]
ie. \(P(>5)\) is \(\sim 7 \times P(>7)\) (wesaw \(\sim 5 x\) )
\[
P>10 \text { is } 1 / 20 P(>7) \quad \text { SAFE }
\]

For the shover derarsers, \(n \sim 0.5 \times 40 \sim 20\)
\[
\begin{array}{rlrl}
\pi & \sim 1-\exp \left(-20 \exp \left(-P_{0}\right)\right) \\
& \sim 0.13 \text { for } P_{0}=5 \\
& \sim 0.02 & P_{0}=7 \\
& \sim 0.001 & P_{0}=10
\end{array}
\]

1 sccurrece in 50 specina
\(P=10 \times\) mean is fairly safe, and cenry ro reed.
Compure signficances peex bs preen therigh, ley vany.
\[
\begin{array}{r}
\text { Turinsend } \\
\\
\\
\\
33^{\prime \prime} \\
n \cdot s^{\prime \prime} \\
12^{\prime \prime}
\end{array}
\]

Hence:-
Arerage angle data \(20^{\prime \prime}<\theta<100^{\prime \prime}\).

\(\Rightarrow \operatorname{Sin}\) peers \(111 ._{\prime \prime}^{\prime \prime} 6,7^{\prime \prime} .0, S^{\prime \prime} .6\)
Averape anple dere \(0^{\prime \prime}<\theta<100^{\prime \prime}\)
\[
\begin{array}{llll}
0.292 & 10 \times \text { bgrd } & \pi=9.3 \times 10^{-4} & \text { in } 52 \text { speche } \sqrt{6} 6.85 \\
0.3575 & 11< & 3.4 \times 10^{-4} & \text { in } 143 \text { sp- } \sqrt{ } 5^{\prime \prime} .6
\end{array}
\]
\(1^{\prime \prime} 3\) arple dera \(\quad 0^{\prime \prime}<\theta<100^{\prime \prime}\)
\[
0.190 \quad 10.4 \times \text { bgrd } \quad \pi=1.5 \times 10^{-3} \quad 1 \text { in } 14 \text { speche } \sqrt{5^{\prime \prime} .8}
\]
\(1^{\prime \prime} 3\) deferetion dela \(0^{\prime \prime}<\theta<100^{\prime \prime}\)
\[
0.190
\]
\[
9.3 \times \mathrm{bgim} \quad \pi=4.5 \times 10^{-3} \quad 1 \text { in } 4.6 \text { specthe } \cdot 5^{\prime \prime} .8
\]
\[
\begin{array}{clllll}
\frac{2^{\prime \prime} .1 \text { angle dera }}{0.0885} & 0^{\prime \prime}<\theta<134 " & & & \\
0.166 & 7.7 \times \text { bord } & \pi=2.0 \times 10^{-2} & \text { in } 1.2 & \times 16^{\prime \prime} .9 \\
0.260 & 11.5 \times \text { bgrd } & \pi=4.5 \times 10^{-4} & \text { in } 51 \text { speche } \sqrt{\prime \prime} .0 \\
& 11.1 \times & \pi=6.6 \times 10^{-4} & \text { in } 34 & \checkmark S^{\prime \prime} .8
\end{array}
\]

2"1 ayledove \(15^{\prime \prime}<\theta<134^{\prime \prime}\)


4"4 ampe dera \(125<\theta<276^{\prime \prime}\)
0.148
0.102
0.274
0.372
\(4^{\prime \prime} 4\) amle dora \(80^{\prime \prime}<\theta<276^{\prime \prime}\)
\(10.2 x\)
\(\pi=7.4 \times 10^{-4}\)
\(8.2 \times 10^{-6}\)
1 in 62 specha
\[
\begin{gathered}
23.16 \\
344^{\prime \prime} 3 \\
12^{\prime \prime} .7 \\
9 " 4
\end{gathered}
\]

No Sigmficer peens
15" anje dara \(210^{\prime \prime}<\theta<440^{\prime \prime}\)-Sidelobes at \(230^{\prime \prime}\) beocliasini
0.029
0.086
0.141
\[
8 s^{\prime \prime}
\]

2"I' ayle dera \(30^{\prime \prime}<\theta<100^{\prime \prime}\)
0.115
0.163
\(10.2 \times b \mathrm{gin}\)
\(9.1 \times 5 \mathrm{~g}\) 合
\(l^{\prime \prime}\) Bayle dore \(30^{\prime \prime}<\theta<100^{\prime \prime}\)
\begin{tabular}{lllll}
0.190 & \(26.3 \times \operatorname{gg} 20\) & smell & \(\infty\) & \(5^{\prime \prime} .8\) \\
0.083 & \(5.8 \times \operatorname{bg2}\) & & \(13^{\prime \prime} 3\) \\
0.140 & \(5.2 \times\) & & &
\end{tabular}

15"angle dara \(0^{\prime \prime}<\theta<456^{\prime \prime}\)
0.0781
\[
7.5 \times b g 17
\]
\(\geqslant 22\) July 1982

CH fir to NGC62SI
Core interaction
\(\frac{C o m e}{1.6} \times 10^{5}\) cells
\(z_{s}=0.6864(\mathrm{kpc})\)
\[
a=1.0
\]
\[
m=4.15
\]
\[
\begin{aligned}
& p_{s}=4 \times 10^{8} \mathrm{~cm}^{3} \mathrm{k} \\
& \text { he } T \sim 4 \times 10^{8}
\end{aligned}
\]
\[
\text { he T工 } 4 \times 10^{8}
\]

Conclude: At \(T=2 \times 10^{7} \mathrm{~K}\) Core has \(L_{x} \sim 2.3 \times 10^{44}\) erglse \(90 \%\) within \(1 k p e\) of certes

22 July 1982
CH fit to NaC62SI
\[
z_{s}=16.73 \mathrm{kpc}
\]

Halo integration
\(1.6 \times 10^{5}\) cells. \(m=2.60\)


Conclude: At \(T=2 \times 10^{7} \mathrm{~K}\)
Halo has \(L_{x} \sim 6.7 \times 10^{42}\) erg/sec \(90 \%\) within 50 le of center
N.B. Ronde L's by 1.352 M's by 1.163




Table 4
Minimum Mass and 0.5-4 ker luminosiry of media tegured to cafie NECG2SI jer


Onfflow himit from hobe Depa'.
\[
\begin{aligned}
\text { Withs, wilson, Scrom (ig78) } \rightarrow & n_{e} \text { in lobe } \ll 2 \times 10^{-5} \mathrm{~cm}^{-3} \\
& B_{\text {eq }}=1.5 \times 10^{-6} \text { gemm. }
\end{aligned}
\]
hobe redius \(\sim 7^{\prime} \cdot 5=450^{\prime \prime}=193 \mathrm{kc}=5.96 \times 10^{21} \mathrm{~m}\)
Mars in sphere of this redins \(=\frac{4}{3} \times \pi \times 20 \times 1.67 \times 10^{-27} \times\left(5.96 \times 10^{2}\right)^{3}\)
\[
\begin{aligned}
& =2.96 \times 10^{40} \mathrm{~kg} \\
& =1.5 \times 10^{10} \mathrm{MO}_{0}
\end{aligned}
\]

Entrainment upper Limit
\[
\frac{d m}{d t d l}=2 \pi R_{j} \rho_{\text {ISM }} C_{\text {SIAM }}
\]
\(10^{11}\) from core \(\quad \begin{aligned} n T & \sim 1.6 \times 10^{5} \mathrm{~cm}^{-3} \mathrm{~K} . \quad p=2.2 \times 10^{-12} \mathrm{~J} / \mathrm{m}^{3} \\ T & \sim 3.10^{7} \\ & \end{aligned}\)
\[
n \sim 3 \times 10^{1} \times 10^{-3} \mathrm{~cm}^{-3} \quad \rho=8.9 \times 10^{-2.4} \mathrm{~kg} / \mathrm{m}^{3}
\]
\[
c_{S}=\sqrt{\frac{T}{S}}=6.4 \times 10^{5} \mathrm{~m} / \mathrm{s} .=640 \mathrm{kms} .
\]
\[
R_{j}=0.175,=322 \mathrm{pc}=9.93 \times 10^{18} \mathrm{~m}
\]

Hence \(\frac{d m}{d t d l}=2 \times \pi \times 9.93 \times 10^{18} \times 8.9 \times 10^{-24} \times 6.4 \times 10^{5} \mathrm{~m} / \mathrm{s}\)
\[
\begin{aligned}
& =3.55 \times 10^{2} \mathrm{~kg} / \mathrm{m} / \mathrm{sec} \\
& =1.09 \times 10^{22} \mathrm{~kg} / \mathrm{kp} / \mathrm{scc} \\
& =3.46 \times 10^{29} \mathrm{~kg} / \mathrm{kpc} / \mathrm{gr} \\
& =0.17 \mathrm{mo} / \mathrm{kpc} / \mathrm{gr} .
\end{aligned}
\]

\[
\geqslant 7 \mathrm{kpe}
\]
lie. velocity cowl be haloed by \(\sim 7\) Ape further arm the jer \(\sim 16^{\prime \prime}\)
lie. by \(\theta \sim 26^{\prime \prime} \quad R_{j}=1.84 \times R_{j \text { in }}\)


Hanring Prewhivered
Pover Sp. (S12) (InnerJer)
\(1^{\prime \prime} 3\) dera \(\Delta(\theta)^{\prime \cdots} 28^{\prime \prime} 17^{\prime \prime} 12^{\prime \prime} .7-10^{\prime \prime} .45^{\prime \prime} .8^{\prime}\) \(-\theta>15 \prime 4\)


Conclude 9 ".1
\[
\begin{aligned}
& 12^{\prime \prime} \cdot 4 \text { growing } \\
& 17^{\prime \prime} \cdot 6 \text { ? }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Arerafed } \Delta / \theta \quad 2^{\prime \prime} \text { cell } \quad 20^{\prime \prime}<\theta<60^{\prime \prime} \quad \Pi^{\prime \prime} 5 \\
& 9^{\prime \prime}: 0 \\
& 20^{\prime \prime}<\theta<80^{\prime \prime} \quad 17^{\prime \prime} .8 \\
& \begin{array}{l}
11.4 \\
9^{\prime \prime} .5
\end{array} \\
& \underline{\left.20^{\prime \prime}<\theta<100^{\prime \prime} \quad \begin{array}{ll}
17^{\prime \prime} \cdot 3 \\
11^{\prime} \cdot 6
\end{array}\right]} \\
& 8^{\prime \prime} \cdot 7 \\
& \begin{array}{ll}
20^{\prime \prime}<\theta<120^{\prime \prime} & 17^{\prime \prime} \cdot 1 \\
& 11^{\prime \prime} .5 \\
& 8^{n} .7 \\
& 6^{4} .9
\end{array}
\end{aligned}
\]
\(\left.\begin{array}{l}\text { Conchide } \\ \text { finelly }\end{array}\right] \xrightarrow{9.0,12.1,17.5}\)

Poover Sp (S,2) Ourer Jer
\begin{tabular}{ll|lll}
\(\Delta(\theta)\) & \(140^{\prime \prime}\) & \(35^{\prime \prime} .5\) & \(28^{\prime \prime} .0\) & \\
& \(143^{\prime \prime}\) & & \(27^{\prime \prime} \cdot 3\) & \\
\(\Delta / \theta(\theta)\) & \(146^{\prime \prime}\) & \(35^{\prime \prime} .5\) & \(26^{\prime \prime} .3\) & \(58^{\prime \prime} .6\)
\end{tabular}
4.4 dere \(\Delta(\theta)\left(137^{\prime \prime}\right) \quad 31^{\prime \prime} .2 \quad 23^{\prime \prime} .317^{\prime \prime} .112^{\prime \prime} .69^{\prime \prime} 4 \quad \theta>0\)
\[
\begin{array}{lllll}
\Delta(\theta) & \left(133^{\prime \prime}\right) & 31^{\prime \prime} .3 & 17^{\prime \prime} .212^{\prime \prime} .6 & 20<\theta<260 \\
\Delta(\theta(\theta) & \left(151^{\prime \prime}\right) & 30^{\prime \prime} .6 & 17^{\prime \prime} .111 .8 & \theta>0 \\
\Delta / \theta(\theta) & \left(140^{\prime \prime}\right) & 3 k^{\prime \prime} .3 & 17.2 & 12^{\prime \prime} .7
\end{array} 58^{\prime \prime} .0 \quad 20<\theta<260
\]


Conclude:
\[
\begin{array}{ll}
143^{\prime \prime} & 57^{\prime \prime} ? \\
31^{\prime \prime} .1 \\
17^{\prime \prime} .2 \\
12^{\prime \prime} .4
\end{array}
\]

Over-all \(143^{\prime \prime}\)
\[
\begin{aligned}
& 31^{\prime \prime} .1 \\
& 17.5
\end{aligned}
\]
\[
12.1
\]
\[
9^{\prime \prime} \cdot 0
\]```

