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Abstract—Terahertz heterodyne receivers typically use double 

sideband (DSB) mixers. The precise knowledge of the receiver 
sideband ratio (SBR) is a fundamental requirement for the 
calibration of the data taken with this type of receivers. At the 
moment the spectroscopic techniques developed for 
submillimeter analysis, such as Martin Pupplet interferometry[1] 
and Gas cell technique[2] rely on a calibrated filter system and 
suffer from inaccuracies caused by standing waves. Here, we 
present sideband ratio measurements of a submillimeter receiver 
in the 600-720 GHz band (ALMA Band 9) using a Michelson 
interferometer as input filter. The main requirement for this 
method is that the resolution must be high enough to allow 
distinguishing between the two side bands of the DSB receiver. 
The advantages of this method are, first, the simplicity of the 
experimental setup, and, second, the possibility to identify and 
calibrate out standing waves in the signal and local oscillator 
paths. In our procedure we use, in fact, exactly the same receiver 
configuration for both direct and heterodyne detections. 
Although the results are still preliminary, we have found a good 
agreement in the SBR measured with both configurations.  

 
Index Terms—Double sideband mixer, Michelson 

interferometer, sideband ratio. 
 

I. INTRODUCTION 
The millimeter and submillimeter regions of the 
electromagnetic spectrum are the most important ones for 
radio astronomy and for measurement of atmospheric 
molecules[3]. For the detection of these wavelengths, one of 
the most common methods is heterodyne detection. The 
purpose of a heterodyne receiver is to translate a signal at 
higher frequency to a lower frequency where it can be 
amplified more effectively. In a heterodyne receiver the 
incoming reference signal (RF) is combined, or “mixed”, with 
a local oscillator (LO) signal at a frequency close to the 
reference signal frequency. The RF signal can be either above 
or below the LO frequency. These bands are called upper 
(USB) and lower (LSB) bands. The output of the receiver is 

the intermediate frequency (IF) corresponding to fUSB−fLO or 
fLO−fLSB. A double-sideband receiver has only one IF port and 
both signals are received in the same channel. 
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The accurate calibration of a heterodyne receiver requires 
knowledge of the sideband ratio (SBR), which is, the gain 
ratio between the upper and lower sideband frequencies. For 
an ideal double-sideband receiver the SBR is equal to one, but 
in practice the receiver response in the upper sideband may be 
different from that in the lower sideband. Hence it is very 
important to know the SBR at different LO frequencies to be 
able to recover, from a measured spectrum, the correct relative 
intensity of the various spectral lines. 
Here we propose a new method to measure the SBR based on 
a Michelson interferometer. We investigate the relation 
between the direct and heterodyne mode to determine if the 
simple direct detection method is a reliable predictor of the 
SBR, and whether it can be used for the calibration of actual 
observations. 
 

II. EXPERIMENTAL SETUP 
A block diagram of the instrumental setup is shown in Fig.1. 
The source consists of a glowbar lamp with a chopper in front 
of it for lock-in measurements. The first part of the setup 
consists of a Michelson interferometer. A beamsplitter (BS1) 
at the entrance of the Michelson interferometer is used to 
separate the light from the source into two beams. One beam 
is reflected off a fixed mirror and one off the moving mirror, 
whose motion is computer-controlled. Varying the position of 
the moving mirror changes the optical path of the second 
beam, thus introducing a time delay between the two beams. 
After the reflection from the mirrors, the beams are 
recombined, again through the beamsplitter BS1. The intensity 
of the recombined beam as a function of the path difference is 
the Fourier transform of the product of the spectral 
distribution of the source, the transmission of the optical 
medium and the spectral response of the detector. The 
maximum spectral resolution is defined as ∆ν=c/2∆l, where c 
is the light velocity and ∆l is the difference length path of the 
movable mirror. Since the resolution of a Michelson 
interferometer increases with increasing optical path 
difference, the maximum spectral resolution is achieved by 
using the entire distance over which the movable mirror can 
be displaced to measure only one side of the interferogram. If 
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both sides of the interferogram are measured, the achieved 
resolution is half of the maximum resolution. In our 
Michelson interferometer the maximum spectral resolution 
achievable is 1 GHz, corresponding to a difference in path 
length of 150 mm. 

Fig. 1.  Scheme of the heterodyne detection setup. BS1 is the beamsplitter of 
the Michelson interferometer. The beam from BS1 is coupled with the signal 
from the LO through beamsplitter BS2. L and G1 are respectively a lens and a 
grid used to focalize and change the amplitude of the LO signal. The grid G2 
is used to reduce the standing waves from the LO as discussed in the text. 
The rejected beams are sent to absorber plates, A.  
  

When the receiver is used in direct detection mode, the 
recombined beam is sent to a parabolic mirror which focuses 
it into the cryostat where the receiver is located. In this way it 
is possible to obtain the frequency response of the receiver. In 
heterodyne detection mode, the beam from the parabolic 
mirror is coupled with the signal from the local oscillator 
using the beamsplitter BS2. We have performed the 
experiment in both detection modes using two different 
superconductor-insulator-superconductor (SIS) junctions, 
hereafter called mixer 1 and mixer 2. Both junctions are 
designed to operate in the 600−720 GHz band. Due to 
imperfections in the coupling between the incoming signal 
and the horn receiver, some LO signal can be reflected back 
into the Michelson interferometer forming standing waves. 
Since the LO signal is polarized, introducing a new grid (G2) 
can reduce these standing waves. We have done so during the 
heterodyne detection with mixer 2. By rotating G2 we can 
diminish the intensity of the standing waves. 
 

III. RESULTS AND DISCUSSION 
We start presenting the data taken with mixer 1 which were 
obtained without the insertion of grid G2. First, we have 
measured the response of the mixer over the entire frequency 
range using the direct detection mode. This corresponds to the 
thick grey curve in Fig. 2a. The resolution in this mode is 
18.75 GHz corresponding to a difference in path length of 8 
mm. We have then characterized the mixer in heterodyne 
mode. This is achieved by coupling the LO signal at different 
LO frequencies to the RF signal. During heterodyne detection 
the LO frequency is varied from 597.6 GHz to 720 GHz in 
steps of 3.6 GHz. The LO signal power was kept constant 
over the whole frequency range. For these measurements we 

have used the entire path length of the Michelson 
interferometer in order to have the maximum spectral 
resolution (1 GHz). Examples of heterodyne spectra, acquired 
with different LO frequencies, are shown in the thin lines of 
Fig. 2a. In each spectrum two peaks can be clearly 
distinguished around the LO frequency, they correspond the 
LSB and USB bands. A third peak is visible between the two 
main features at exactly the LO frequency. These peak is 
originated by the standing waves from the LO that are 
reflected back in the interferometer.  

Fig. 2.  Comparison between the direct response spectrum (thick grey line) 
and some heterodyne detection spectra at different LO frequencies (thin lines): 
a) with mixer 1 and without grid G2, b) with mixer 2 and the insertion of grid 
G2. 

Since the gain of the mixer is not constant for all 
measurements at different LO frequencies, each of the 
heterodyne spectra was normalized so that the intensity of one 
of the two sideband peaks coincides with the intensity of the 
direct response at the same frequency. With this procedure we 
can directly compare the full spectrum obtained with the direct 
detection mode and the heterodyne spectra at different LO 
frequencies. As it can be seen in Fig. 2a, the intensity ratio 
between the upper and lower sideband peaks follows closely 
the intensity profile of the direct spectrum. 
The sideband ratio (SBR) is calculated for each LO frequency 
as the ratio between the integrals of the USB and LSB peaks. 
This is then compared with the SBR estimated from the direct 
detection response, defined as the ratio between the integrals 
of the direct-detection curve in the same frequency ranges of 
the USB and LSB peaks, respectively. The result of this 
comparison is reported in Fig. 3a. Each estimate is 
accompanied by the appropriate error bar. It can be seen that 
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for both detection modes the SBR is in the expected range, 
i.e., between 1.0 and 2.0[4] (corresponding to less than 3 dB), 
over the whole frequency spectrum. 
From this first set of measurements it is seen that there are 
some differences between the SBR in the two different 
detections modes at frequencies below 640 GHz. The main 
reason is the presence of standing waves coming from the LO 
source as the pumping level changes with the position of the 
moving mirror in the Michelson interferometer. This effect is 
more pronounced at low frequencies since the coupling horn-
incoming signal is also lower at these frequencies. The 
insertion of G2 solves almost completely this problem as 
discussed in Section II. Another problem is the low pumping 
level of the LO at some frequencies. An example of that is the 
lack of results between 620 and 640 GHz: the pumping level 
was not enough to generate a signal response at these 
frequencies. To overcome this difficulty, we have split the 
frequency range in two subranges, a low-frequency range 
from 590.4 GHz to 662.4 GHz and a high-frequency range 
from 666.0 GHz to 720 GHz. For each range we realigned the 
LO signal in order to optimize the pumping level. The 
heterodyne spectra were taken separately in these two 
frequency ranges, again in steps of 3.6 GHz. We performed a 
second set of measurements, with mixer 2, where these two 
changes were implemented. The results are shown in Fig. 2b. 
It is evident that the intensity of the central peak in each 

heterodyne spectrum has decreased. For mixer 2 we have also 
acquired a complete spectrum in direct mode. For this 
measurement we have increased the resolution to 9 GHz 
corresponding to a length path of 16 mm. This allows to 
increase the number of points in the direct spectrum and thus 
achieve a better estimate of the area under the curve for the 
evaluation of the SBR in direct mode. The spectra taken in 
these two configurations follow also quite well each other 
(Fig. 2b). What is more important, we found an almost perfect 
agreement between the SBR calculated from the two different 
detection modes (Fig. 3b). 

Fig. 3.  Comparison between the measured SBR in heterodyne mode (ratio 
between the integrals of the USB and LSB peaks) and the estimated SBR from 
the direct detection response (ratio between the integrals of the direct 
detection curve in the same frequencies range of the USB and LSB peaks) a) 
with mixer 1 and without the grid G2, b) with mixer 2 and the insertion of the 
grid G2. 

IV. CONCLUSIONS 
We have presented a new simple experimental set up to 
measure directly the sideband ratio in heterodyne receivers. 
This set up uses a Michelson interferometer and a grid to filter 
out standing waves. We have applied this method to 
investigate the sideband ratio of two different double-sideband 
mixers when used in direct and heterodyne detection modes. 
A good agreement between these two modes has been found. 
However, a more thorough investigation of the relation 
between the direct and heterodyne mode is necessary, 
especially at low frequencies. We plan also to apply this 
method to the calibration of the sideband-separating mixer for 
Band 9 of ALMA recently developed at SRON. 
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