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Abstract — Transition edge sensor (TES) bolometers are using now 
in more than ten projects of imaging radiometers for ground based 
and balloon SUBMM telescopes. In this work the temperature 
dependences of the resistance of bi-layer Mo/Cu structures destined 
for TES bolometers were measured in the range of 0.05–1.0 K. Using 
these dependences and the electron energy balance equation the 
current–voltage and power–voltage characteristics of bolometers on 
the basis of such structures for the case of a fixed d.c. bias voltage 
are  calculated. The expression for the current increment produced by 
such a bolometer in response to absorbed radiation power is derived. 
The noise equivalent power of a realizable bolometers is calculated 
from the current response in the case when detected signals are 
amplified by a highly sensitive SQUID. 
 
Keywords—Radio astronomy, millimeter- and submillimeter-wave 
detectors, superconducting devices, superconducting radiation 
detectors, transition edge sensor bolometers. 
 

I. INTRODUCTION 
URING last three-four years the developments of 
imaging radiometers based on TES bolometer arrays for 
more than 

ten short millimeter – long submillimeter waveband region 
ground based and balloon telescopes take place in the world 
(see for example [1-8]. Such developments has been started in 
Russia too. In this situation further study of different aspects 
of such radiometers, in particular, TES bolometer arrays for 
optimization of bolometers themselves, biasing and signal 
multiplexing systems, optical (quasioptical) cameras etc. is 
necessary. In this paper we report some investigation results 
of superconducting transition in a Mo/Cu thin film structure. 
Results of other said above aspects are given in three more our 
papers at this Symposium. 
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II. SUPERCONDUCTING TRANSITION IN MO/CU THIN FILM  
BI-LAYER STRUCTURE 

 
It is well known that the use of transition edge sensor 

bolometers with low transition temperatures (~ 0.3 - 0.1 К) is 
one of the most promising ways to achieve appropriate 
sensitvity of radiometers for submillimeter astronomy [9-11, 
8]. Since it is important to have temperature of 
superconducting transition in the range of stable operation of 
used refrigerator it has been proposed [12] to use the 
“superconductor-normal metal” bi-layers showing a proximity 
phenomenon. Changing the thickness of layers the 
temperature of the superconducting transition of the whole bi-
layer structure can be adjusted to the desired value. Toward 
this end the Mo/Cu bi-layers with different layers thickness 
showing the superconducting transition in the temperature 
range 0.05 - 1.0 K have been fabricated and experimentally 
tested in this work. We have fabricated them in high vacuum 
magnetron sputtering machine. Mo and Cu layers were 
deposited on a polished Si wafer in one vacuum cycle from 
two magnetrons successively by DC magnetron sputtering in 
argon atmosphere.  

The Mo and Cu layers sputtering rate was measured using 
test samples and profiler; working sample layer thicknesses 
were determined through sputtering time measurement. Layer 
thicknesses (nm) of fabricated Mo/Cu samples were:  
 
        8/0,   8/30,  8/50,  8/100;      15/50, 25/50, 35/50, 50/50;  
      12/0, 12/30,12/50,12/100;      10/40, 15/35, 20/30, 30/20. 
 

The investigation of film and bi-layer structures surfaces 
quality on the electron and atomic forces microscopes were 
fulfilled. Results are shown on Fig. 1 and Fig. 2. Results of 
investigations on both microscopes show that surfaces are 
continuous and sufficiently smooth. 

The dependences R(T) of 13×1.3 sq. mm size samples have 
been  measured  in  the  3He/4He  dilution  cryostat  using 
four- point method [13]. It occurred that 12-15 nm Mo 
samples are most sensitive for influence of Cu. Samples with 
Mo thickness < 12 nm have not transition. Samples with Mo 
thickness > 15 nm have  transition  edge  temperature > 0.4 – 
0.5 K.  At  these temperatures the Andreev electron reflection 
phenomenon [14] enhancing the heating of electrons becomes 
negligible [15]. 
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f measurements R(T) dependences of Mo/Cu samples 
meters are given in the Table.  

                   
         TABLE  
ARAMETERS OF MEASURED SAMLLES 
ayer hickness, 
        nm 
Mo          Cu 

Tc, K RN, 
Ohm 

(c) (d) 

T dR
R dT

α = ⋅  

   0 0.93   6    1070 12 7 
  35  0.4 150 15 2.9 

12   35 0.27 2.6 320 
12 100 0.08 0.6 510 
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distance for Cooper pairs in norm l metal and superconductor: a
nξ , 10100 −≈sξ nm [16]. 

(ii) The dependences R(T) corresponding to the measurements 
described above taken at small bias currents and R(T ) when 
electrons are heated by current

e
 of comparatively large value 

th gh supercon ectrodes with high enough critical 

controlled by the electron energy 

) is the resistance of the 
olometer depending on electron temperature. The right side 

is written in analogy to the electron energy balance 
tal hot-electro
honons, i.e. o

calculate IV-curves using the 
measure

 
1) 13 mm – distance between potential probes. 

hat the positive slope portions of IV-curves at 

are close each to other at least in the vicinity of transition 
edge.  
(iii) The absorber of bolometer is voltage-biased to provide 
stable mode of operation and negative electro-thermal 
feedback [17]. The absorber is connected to the bias circuit 

rou ducting el
temperature to assure Andreev electron reflection [15] at 
bolometer absorber-electrodes boundaries.  
 (iv) The IV-characteristic of the TES bolometer connected to 
the voltage-biasing circuit as well as the negative electro-
thermal feedback are 
balance equation [17, 12]: 
 
      ),()(/ 552

pheeJ TTvTRUP −Σ==       (1) 

where the left side term )(/2
eJ TRUP =  is the Joule power 

incoming to the electron system from the bias circuit and 
heating electrons and the right side term is the hot-electron 
power flowing from the electron system to the thin metal film 
lattice and the substrate, U is the fixed bias voltage, Te is the 
hot-electron temperature, R(Te
b
of (1) 
equation for the normal me n bolometer [18,19], 
Tph is the temperature of p f the film lattice and 
substrate, ≅Σ 3 nW·K-5·µm-3 is the material parameter taken 
from [19] where the electron energy balance equation for thin 
normal metal film bolometer on Si substrate at the same 
temperatures has been studied, v is volume of the bolometer 
absorber.  

In our calculations of IV-curves we assume the 
temperature T corresponding right to the beginning of the 
increase of resistance from zero (see Fig. 3) as Tph in equation 
(1). The stable values of R(Te) together with Te and 
consequently current I through the bolometer bi-layer 
structure are established at given bias voltage U in accordance 
with the equation (1) what means that the equation (1) 
controls the IV-curve of strongly nonlinear bi-layer structure. 
This gives the possibility to 

d dependences R(T) and equation (1) keeping in mind 
the assumption (II). The length1) and width of structures were 
reduced from 13×1.5 mm2 proportionally to 8×0.8 µm2 
keeping in mind the assumption (I). Since the length-to-width 
ratio of the absorber remained the same like in case of 
measured samples – the absolute values of their resistances 
and temperature dependences remain the same as well. For 
IV-curves calculations we approximate the total bi-layer 
structure thickness of samples b, c and d by their Cu layers 

thickness values equal to 35 nm and 100 nm respectively 
because these  

layers determine structure resistances. The results of current-
voltage curves calculation are shown in Fig. 4.  In the same 
figure the dependences of dissipated d.c. power in absorber as 
a function of bias voltage are given as well. The common 
shape and order of magnitude of values of these dependences 
are like for dependences measured directly for similar bi-layer 
structure [12]. The difference of results in [12] in comparison 
with Fig. 2 is t
very small bias voltages are absent in our case. The reason is 
that we don’t take into account critical current and besides a 
non-controlled small resistance connected in series with bi-
layer structure occurring in [12] is absent in our case for three 
structures. Nevertheless we suppose that the obtained IV-
curves can be used for estimation of the sensitivity of possible 
bolometers based on the studied Mo/Cu bi-layer structures. 

(b) (c) 

(d) 

Fig. 4. Calculated current-voltage (solid lines) 
(dashed lines) characteristics of constructed TE
on data of three measured Mo/Cu bi-layer struc
T = 0.27 K and T = 0.08 K respectively.   

When small submillimeter radiation
absorbed by TES bolometer at fixed bias 
the equation (1) has to be modified to   

 (2)where Prad is added to the Joule 

2 5/[ ( ) ] [( )e rad e eU R T R P v T T+ ∆ + = Σ + ∆

increments ∆R and ∆Te are added to the re

16th International Symposium on Space Terahertz Technology

539
 
and power-voltage 

S bolometers based 
tures at T = 0.4 K, 

 power Prad is 
voltage U = const 

5

power and small 
istance R(Te) and 

],phT−  

s



the temperature Te. The equation for small values can be 
extracted from (2): 

 
2

4
2 5 .rad e e

U R P v T T∆
− + ≅ Σ ⋅ ∆    

( )eR T
transformations using expressions I+∆I = U/(R+∆R) and 

( / ) ( / )e eT R R Tα ≅ ⋅ ∆ ∆

  (3)After simple 

 

current responsivity of TES bolometer 
one obtains the expression for the 

51 /[1 (5 / ) /( / )].I e J
rad

IS vT P
P U

α−∆
= = + Σ    (4) 

om (1) we have 5 / 1Fr  and from results of 

measurements we also have 
e JvT PΣ ≤

100α > . So  

        1 ,I
rad

IS
P U

des with analogous expression in [4] 
with the difference that in our cas

−∆
= ≅         (5) 

what practically coinci
e radiation energy is 

absorbed directly by TES. Besides.given here derivation of the 
expression for the current responsivity SI of T  
reflects clearly the mechanism of negative electrothermal 

take place in the 
ge. From 4 µV,  

0.27 K and T = 0.081 K respectively. The noise 

ES bolometer 

feedback. 

Minimal values of the voltage bias U 
vicinity of the transition ed  Fig. 7

4.0 10−≅U
8

0.27 10U −≅ µV and µV for structures at T = 9
08.0 10−≅U  

0.4 K, T = 

equivalent power of TES bolometers =NEP Inoise Si /2  

[3] where 2
noisei  is root-mean-square noise current of a 

readout-amplifier next to the bolometer. We have SQUID 

readout-amplifier with 2 124 10i −≅ ⋅ A/Hz1/2. With this 

 W/H

NEP ≅ Hz1/2

noise

readout-amplifier we have 19
0.4 4 10NEP −≅ ⋅ z1/2,  

204 10−⋅ W/ d 21
0.08 4 10NEP0.27  an −≅ ⋅  

W/Hz1/2. Of course these are just estimation values and 
measurements of real bi-layer structures IV-curves and 
bolometer NEP’s are needed. The pr  

…… The obtained results give a possibility of the better 
understanding of the TES bolometer operation mechanism as 
well as show the way of f its layer thickness 
values to a stable temperature of the used refrigerators and 
permit the preliminary estimation of the noise equivalent 

their fabrication and bolom
for the mounting 

bolometers. 
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